Institute of Materials Research and Engineering , 3 Research Link, Singapore 117602, Singapore.
Biomicrofluidics. 2015 Sep 2;9(5):052611. doi: 10.1063/1.4929579. eCollection 2015 Sep.
Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics.
沿(贵金属)金属/电介质界面传播的电磁模式的表面等离子体共振(SPR)和纳米尺度金属结构(粒子、棒、壳、孔等)上的局域 SPR(LSPR)。这两种光学换能器概念都可以与微流控装置结合并集成,用于生物分子分析物的检测,其优点是用于即时检测的占地面积小、一次性处置成本低、易于集成到阵列格式中。这种集成的关键技术包括等离子体芯片、微流道制造、表面生物功能化以及检测方案的选择,这些都是根据目标分析物的具体情况选择的。本文展示了几种将等离子体学和集成微流控技术结合使用的示例,使用不同的等离子体产生机制进行不同的分析物检测。一个例子是使用金膜作为基底的 DNA 传感器阵列,以及表面等离子体荧光光谱和显微镜作为转换方法。然后将其与角度询问的用于聚乙二醇硫醇相互作用检测的光栅耦合 SPR、用于生物素链霉亲和素检测的基于金纳米孔的 LSPR 芯片、以及用于金纳米孔/纳米柱检测的量子点标记物激发的 LSPR 进行比较用于检测前列腺特异性抗原。我们的实验结果表明,等离子体集成微流控技术是一种很有前途的工具,可用于理解生物分子相互作用和分子识别过程以及生物传感,特别是用于现场或即时诊断。