肽与金属和氧化物表面的相互作用。
Peptide interactions with metal and oxide surfaces.
机构信息
Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, Case 178, 75252 Paris Cedex 05, France.
出版信息
Acc Chem Res. 2010 Oct 19;43(10):1297-306. doi: 10.1021/ar100017n.
Increasing interest in bio-interfaces for medical, diagnostic, or biotechnology applications has highlighted the critical scientific challenge behind both the understanding and control of protein-solid surface interactions. In this context, this Account focuses on the molecular-level characterization of the interactions of peptides, ranging in size from a few amino acids to long sequences, with metal and oxide surfaces. In this Account, we attempt to fill the gap between the well-known basic studies of the interaction of a single amino acid with well-defined metal surfaces and the investigations aimed at controlling biocompatibility or biofilm growth processes. We gather studies performed with surface science tools and macroscopic characterization techniques along with those that use modeling methods, and note the trends that emerge. Sulfur drives the interaction of cysteine-containing peptides with metal surfaces, particularly gold. Moreover, intermolecular interactions, such as hydrogen bonds may induce surface self assembly and chiral arrangements of the peptide layer. Depending on the solvent pH and composition, carboxylates or amino groups may also interact with the surface, which could involve conformational changes in the adsorbed peptide. On oxide surfaces such as titania or silica, researchers have identified carboxylate groups as the preferential peptide binding groups because of their strong electrostatic interactions with the charged surface. In high molecular weight peptides, systematic studies of their interaction with various oxide surfaces point to the preferential interaction of certain peptide sequences: basic residues such as arginine assume a special role. Researchers have successfully used these observations to synthesize adhesive sequences and initiate biomineralization. Studies of the interaction of peptides with nanoparticles have revealed similar binding trends. Sulfur-containing peptides adhere preferentially to gold nanoparticles. Peptides containing aromatic nitrogen also display a high affinity for various inorganic nanoparticles. Finally, we describe a novel class of peptides, genetically engineered peptides for inorganics (GEPIs), which are selected from a phage display protocol for their high binding affinity for inorganic surfaces. Extended investigations have focused on the mechanisms of the molecular binding of these peptides to solid surfaces, in particular the high binding affinity of some sulfur-free sequences of GEPIs to gold or platinum surfaces. We expect that this clearer view of the possible preferential interactions between peptides and inorganic surfaces will facilitate the development of new, more focused research in various fields of biotechnology, such as biocompatibility, biomimetics, or tissue engineering.
人们对医学、诊断或生物技术应用的生物界面越来越感兴趣,这凸显了理解和控制蛋白质-固体表面相互作用背后的关键科学挑战。在这种情况下,本专题着重介绍了大小从几个氨基酸到长序列的肽与金属和氧化物表面相互作用的分子水平特性。在本专题中,我们试图填补众所周知的单个氨基酸与定义明确的金属表面相互作用的基础研究与旨在控制生物相容性或生物膜生长过程的研究之间的空白。我们收集了使用表面科学工具和宏观特性技术进行的研究以及使用建模方法进行的研究,并注意到出现的趋势。硫驱动含半胱氨酸的肽与金属表面(特别是金)的相互作用。此外,分子间相互作用(如氢键)可能会诱导表面自组装和肽层的手性排列。根据溶剂 pH 值和组成,羧酸根或氨基也可能与表面相互作用,这可能涉及吸附肽的构象变化。在氧化钛或氧化硅等氧化物表面上,研究人员已经确定羧酸根是肽的首选结合基团,因为它们与带电荷的表面之间存在强烈的静电相互作用。在高分子量肽中,对其与各种氧化物表面相互作用的系统研究表明,某些肽序列具有优先相互作用:精氨酸等碱性残基具有特殊作用。研究人员成功地利用这些观察结果合成了粘性序列并引发了生物矿化。对肽与纳米颗粒相互作用的研究揭示了类似的结合趋势。含硫肽优先附着在金纳米颗粒上。含芳香氮的肽也对各种无机纳米颗粒表现出高亲和力。最后,我们描述了一类新型肽,即用于无机物的基因工程肽(GEPI),它们是从噬菌体展示方案中选择出来的,因为它们对无机表面具有高结合亲和力。进一步的研究集中于这些肽与固体表面的分子结合机制上,特别是某些不含硫的 GEPIs 序列对金或铂表面的高结合亲和力。我们期望对肽与无机表面之间可能存在的优先相互作用有更清晰的认识,这将有助于在生物技术的各个领域(如生物相容性、仿生学或组织工程学)开展更有针对性的新研究。