Suppr超能文献

噬菌体展示的最小环式冰结合肽。

A minimalistic cyclic ice-binding peptide from phage display.

机构信息

Laboratoire des Polymères, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry, UK.

出版信息

Nat Commun. 2021 May 11;12(1):2675. doi: 10.1038/s41467-021-22883-w.

Abstract

Developing molecules that emulate the properties of naturally occurring ice-binding proteins (IBPs) is a daunting challenge. Rather than relying on the (limited) existing structure-property relationships that have been established for IBPs, here we report the use of phage display for the identification of short peptide mimics of IBPs. To this end, an ice-affinity selection protocol is developed, which enables the selection of a cyclic ice-binding peptide containing just 14 amino acids. Mutational analysis identifies three residues, Asp8, Thr10 and Thr14, which are found to be essential for ice binding. Molecular dynamics simulations reveal that the side chain of Thr10 hydrophobically binds to ice revealing a potential mechanism. To demonstrate the biotechnological potential of this peptide, it is expressed as a fusion ('Ice-Tag') with mCherry and used to purify proteins directly from cell lysate.

摘要

开发模拟天然冰结合蛋白(IBP)特性的分子是一项艰巨的挑战。我们没有依赖于已经为 IBP 建立的(有限的)现有结构-性质关系,而是在这里报告了使用噬菌体展示来鉴定 IBP 的短肽模拟物。为此,开发了一种冰亲和力选择方案,该方案能够选择仅包含 14 个氨基酸的环状冰结合肽。突变分析确定了三个残基,天冬氨酸 8(Asp8)、苏氨酸 10(Thr10)和苏氨酸 14(Thr14),它们被发现对冰结合至关重要。分子动力学模拟表明,Thr10 的侧链疏水性结合到冰上,揭示了一种潜在的机制。为了展示该肽的生物技术潜力,它被表达为与 mCherry 的融合物(“Ice-Tag”),并直接从细胞裂解物中用于纯化蛋白质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c94/8113477/be0f3b8d72ee/41467_2021_22883_Fig1_HTML.jpg

相似文献

1
A minimalistic cyclic ice-binding peptide from phage display.
Nat Commun. 2021 May 11;12(1):2675. doi: 10.1038/s41467-021-22883-w.
2
Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes.
J Mol Graph Model. 2019 Mar;87:48-55. doi: 10.1016/j.jmgm.2018.11.006. Epub 2018 Nov 20.
3
Stability and growth mechanism of self-assembling putative antifreeze cyclic peptides.
Phys Chem Chem Phys. 2017 Jul 26;19(29):19032-19042. doi: 10.1039/c7cp02465g.
4
Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study.
J Phys Chem B. 2018 Oct 11;122(40):9389-9398. doi: 10.1021/acs.jpcb.8b08506. Epub 2018 Sep 27.
5
Structure and application of antifreeze proteins from Antarctic bacteria.
Microb Cell Fact. 2017 Aug 7;16(1):138. doi: 10.1186/s12934-017-0737-2.
7
Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant.
Langmuir. 2020 Mar 10;36(9):2439-2448. doi: 10.1021/acs.langmuir.0c00065. Epub 2020 Feb 26.
8
Identification of the ice-binding face of a plant antifreeze protein.
FEBS Lett. 2009 Feb 18;583(4):815-9. doi: 10.1016/j.febslet.2009.01.035. Epub 2009 Jan 29.

引用本文的文献

1
Overcoming ice: cutting-edge materials and advanced strategies for effective cryopreservation of biosample.
J Nanobiotechnology. 2025 Mar 7;23(1):187. doi: 10.1186/s12951-025-03265-6.
2
Recent Advances in Antifreeze Peptide Preparation: A Review.
Molecules. 2024 Oct 17;29(20):4913. doi: 10.3390/molecules29204913.
3
Acidic polymers reversibly deactivate phages due to pH changes.
RSC Appl Polym. 2024 Aug 23;2(6):1082-1090. doi: 10.1039/d4lp00202d. eCollection 2024 Nov 14.
4
Improving Pharmacokinetics of Peptides Using Phage Display.
Viruses. 2024 Apr 7;16(4):570. doi: 10.3390/v16040570.
6
Generating Ice-Binding Protein-Polymer Bioconjugates.
Methods Mol Biol. 2024;2730:211-218. doi: 10.1007/978-1-0716-3503-2_15.
8
Chemical approaches to cryopreservation.
Nat Rev Chem. 2022 Aug;6(8):579-593. doi: 10.1038/s41570-022-00407-4. Epub 2022 Jul 18.
9
Anionic Synthetic Polymers Prevent Bacteriophage Infection.
J Am Chem Soc. 2023 Apr 26;145(16):8794-8799. doi: 10.1021/jacs.3c01874. Epub 2023 Apr 17.
10
Microcurvature Controllable Metal-Organic Framework Nanoagents Capable of Ice-Lattice Matching for Cellular Cryopreservation.
JACS Au. 2022 Dec 20;3(1):154-164. doi: 10.1021/jacsau.2c00562. eCollection 2023 Jan 23.

本文引用的文献

1
De novo development of proteolytically resistant therapeutic peptides for oral administration.
Nat Biomed Eng. 2020 May;4(5):560-571. doi: 10.1038/s41551-020-0556-3. Epub 2020 May 11.
4
Peptidic Antifreeze Materials: Prospects and Challenges.
Int J Mol Sci. 2019 Oct 17;20(20):5149. doi: 10.3390/ijms20205149.
5
Laboratory-Scale Isolation of Insect Antifreeze Protein for Cryobiology.
Biomolecules. 2019 May 9;9(5):180. doi: 10.3390/biom9050180.
6
Cyclization of peptides with two chemical bridges affords large scaffold diversities.
Nat Chem. 2018 Jul;10(7):715-723. doi: 10.1038/s41557-018-0042-7. Epub 2018 Apr 30.
7
Ice-Binding Proteins and Their Function.
Annu Rev Biochem. 2016 Jun 2;85:515-42. doi: 10.1146/annurev-biochem-060815-014546. Epub 2016 Apr 25.
8
Ice-shell purification of ice-binding proteins.
Cryobiology. 2016 Jun;72(3):258-63. doi: 10.1016/j.cryobiol.2016.03.009. Epub 2016 Mar 26.
9
Identification of Soft Matter Binding Peptide Ligands Using Phage Display.
Bioconjug Chem. 2015 Oct 21;26(10):2002-15. doi: 10.1021/acs.bioconjchem.5b00377. Epub 2015 Sep 8.
10
Dendrimer-Linked Antifreeze Proteins Have Superior Activity and Thermal Recovery.
Bioconjug Chem. 2015 Sep 16;26(9):1908-15. doi: 10.1021/acs.bioconjchem.5b00290. Epub 2015 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验