Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
Biochemistry (Mosc). 2010 Jul;75(7):825-31. doi: 10.1134/s0006297910070035.
Current data concerning the crucial role of inorganic polyphosphates (polyP) in mitochondrial functions and dysfunctions in yeast and animal cells are reviewed. Biopolymers with short chain length (approximately 15 phosphate residues) were found in the mitochondria of Saccharomyces cerevisiae. They comprised 7-10% of the total polyP content of the cell. The polyP are located in the membranes and intermembrane space of mitochondria. The mitochondrial membranes possess polyP/Ca2+/polyhydroxybutyrate complexes. PolyP accumulation is typical of promitochondria but not of functionally active mitochondria. Yeast mitochondria possess two exopolyphosphatases splitting P(i) from the end of the polyP chain. One of them, encoded by the PPX1 gene, is located in the matrix; the other one, encoded by the PPN1 gene, is membrane-bound. Formation of well-developed mitochondria in the cells of S. cerevisiae after glucose depletion is accompanied by decrease in the polyP level and the chain length. In PPN1 mutants, the polyP chain length increased under glucose consumption, and the formation of well-developed mitochondria was blocked. These mutants were defective in respiration functions and consumption of oxidizable carbon sources such as lactate and ethanol. Since polyP is a compound with high-energy bonds, its metabolism vitally depends on the cell bioenergetics. The maximal level of short-chain acid-soluble polyP was observed in S. cerevisiae under consumption of glucose, while the long-chain polyP prevailed under ethanol consumption. In insects, polyP in the mitochondria change drastically during ontogenetic development, indicating involvement of the polymers in the regulation of mitochondrial metabolism during ontogenesis. In human cell lines, specific reduction of mitochondrial polyP under expression of yeast exopolyphosphatase PPX1 significantly modulates mitochondrial bioenergetics and transport.
目前关于无机多聚磷酸盐(polyP)在酵母和动物细胞中线粒体功能和功能障碍中的关键作用的数据进行了综述。在酿酒酵母的线粒体中发现了具有短链长(约 15 个磷酸残基)的生物聚合物。它们占细胞中总多聚磷酸盐含量的 7-10%。多聚磷酸盐位于线粒体的膜和膜间隙中。线粒体膜具有 polyP/Ca2+/polyhydroxybutyrate 复合物。polyP 的积累是前线粒体的典型特征,但不是功能活跃的线粒体的特征。酵母线粒体具有两种外切多聚磷酸酶,从多聚磷酸盐链的末端裂解 P(i)。其中一种,由 PPX1 基因编码,位于基质中;另一种,由 PPN1 基因编码,位于膜上。在耗尽葡萄糖后,酿酒酵母细胞中线粒体的形成伴随着多聚磷酸盐水平和链长的降低。在 PPN1 突变体中,在消耗葡萄糖时多聚磷酸盐链长增加,并且形成了发育良好的线粒体被阻断。这些突变体在呼吸功能和氧化碳源如乳酸盐和乙醇的消耗方面存在缺陷。由于多聚磷酸盐是一种具有高能键的化合物,其代谢与细胞生物能学密切相关。在消耗葡萄糖时,观察到 S. cerevisiae 中短链酸溶性多聚磷酸盐的最高水平,而在消耗乙醇时则存在长链多聚磷酸盐。在昆虫中,线粒体中的多聚磷酸盐在个体发育过程中发生剧烈变化,表明聚合物参与了线粒体代谢在个体发育过程中的调节。在人细胞系中,酵母外切多聚磷酸酶 PPX1 表达下线粒体多聚磷酸盐的特异性减少显著调节线粒体生物能学和运输。