Suppr超能文献

RuleMonkey:基于规则模型的随机模拟软件。

RuleMonkey: software for stochastic simulation of rule-based models.

机构信息

Clinical Translational Research Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA.

出版信息

BMC Bioinformatics. 2010 Jul 30;11:404. doi: 10.1186/1471-2105-11-404.

Abstract

BACKGROUND

The system-level dynamics of many molecular interactions, particularly protein-protein interactions, can be conveniently represented using reaction rules, which can be specified using model-specification languages, such as the BioNetGen language (BNGL). A set of rules implicitly defines a (bio)chemical reaction network. The reaction network implied by a set of rules is often very large, and as a result, generation of the network implied by rules tends to be computationally expensive. Moreover, the cost of many commonly used methods for simulating network dynamics is a function of network size. Together these factors have limited application of the rule-based modeling approach. Recently, several methods for simulating rule-based models have been developed that avoid the expensive step of network generation. The cost of these "network-free" simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is now needed for the simulation and analysis of rule-based models of biochemical systems.

RESULTS

Here, we present a software tool called RuleMonkey, which implements a network-free method for simulation of rule-based models that is similar to Gillespie's method. The method is suitable for rule-based models that can be encoded in BNGL, including models with rules that have global application conditions, such as rules for intramolecular association reactions. In addition, the method is rejection free, unlike other network-free methods that introduce null events, i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant tool for network-free simulation of rule-based models. We also compare RuleMonkey against problem-specific codes implementing network-free simulation methods.

CONCLUSIONS

RuleMonkey enables the simulation of rule-based models for which the underlying reaction networks are large. It is typically faster than DYNSTOC for benchmark problems that we have examined. RuleMonkey is freely available as a stand-alone application http://public.tgen.org/rulemonkey. It is also available as a simulation engine within GetBonNie, a web-based environment for building, analyzing and sharing rule-based models.

摘要

背景

许多分子相互作用的系统级动态,特别是蛋白质-蛋白质相互作用,可以方便地使用反应规则来表示,这些规则可以使用模型规范语言(如 BioNetGen 语言(BNGL))来指定。一组规则隐含地定义了一个(生物)化学反应网络。一组规则所隐含的网络通常非常大,因此生成规则所隐含的网络往往计算成本很高。此外,许多常用的模拟网络动态的方法的成本是网络大小的函数。这些因素共同限制了基于规则的建模方法的应用。最近,已经开发了几种用于模拟基于规则的模型的方法,这些方法避免了生成网络的昂贵步骤。这些“无网络”模拟方法的成本与规则所隐含的反应数量无关。现在需要软件来模拟和分析生化系统的基于规则的模型。

结果

这里,我们介绍了一种名为 RuleMonkey 的软件工具,它实现了一种类似于 Gillespie 方法的无网络方法来模拟基于规则的模型。该方法适用于可以用 BNGL 编码的基于规则的模型,包括具有全局应用条件的规则的模型,例如用于分子内缔合反应的规则。此外,该方法是无拒绝的,与其他引入空事件的无网络方法不同,即模拟过程中的步骤不会改变正在模拟的反应系统的状态。我们验证了 RuleMonkey 产生正确的模拟结果,并将其性能与另一个符合 BNGL 的用于无网络模拟基于规则的模型的工具 DYNSTOC 进行了比较。我们还将 RuleMonkey 与实现无网络模拟方法的特定于问题的代码进行了比较。

结论

RuleMonkey 能够模拟基础反应网络较大的基于规则的模型。对于我们检查过的基准问题,它通常比 DYNSTOC 快。RuleMonkey 可作为独立应用程序在 http://public.tgen.org/rulemonkey 上免费获得。它也可作为 GetBonNie 中的一个模拟引擎使用,GetBonNie 是一个用于构建、分析和共享基于规则的模型的基于网络的环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2c9/2921409/68b05d2d50ce/1471-2105-11-404-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验