Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
Biophys J. 2010 Jan 6;98(1):48-56. doi: 10.1016/j.bpj.2009.09.043.
We use flow cytometry to characterize equilibrium binding of a fluorophore-labeled trivalent model antigen to bivalent IgE-FcepsilonRI complexes on RBL cells. We find that flow cytometric measurements are consistent with an equilibrium model for ligand-receptor binding in which binding sites are assumed to be equivalent and ligand-induced receptor aggregates are assumed to be acyclic. However, this model predicts extensive receptor aggregation at antigen concentrations that yield strong cellular secretory responses, which is inconsistent with the expectation that large receptor aggregates should inhibit such responses. To investigate possible explanations for this discrepancy, we evaluate four rule-based models for interaction of a trivalent ligand with a bivalent cell-surface receptor that relax simplifying assumptions of the equilibrium model. These models are simulated using a rule-based kinetic Monte Carlo approach to investigate the kinetics of ligand-induced receptor aggregation and to study how the kinetics and equilibria of ligand-receptor interaction are affected by steric constraints on receptor aggregate configurations and by the formation of cyclic receptor aggregates. The results suggest that formation of linear chains of cyclic receptor dimers may be important for generating secretory signals. Steric effects that limit receptor aggregation and transient formation of small receptor aggregates may also be important.
我们使用流式细胞术来描述荧光标记的三价模型抗原与 RBL 细胞上二价 IgE-FcepsilonRI 复合物的平衡结合。我们发现,流式细胞术测量结果与配体-受体结合的平衡模型一致,其中假定结合位点是等效的,并且假定配体诱导的受体聚集是非循环的。然而,该模型预测在产生强烈细胞分泌反应的抗原浓度下会发生广泛的受体聚集,这与大受体聚集应该抑制这种反应的预期不一致。为了研究这种差异的可能解释,我们评估了四种基于规则的模型,用于三价配体与二价细胞表面受体的相互作用,这些模型放松了平衡模型的简化假设。这些模型使用基于规则的动力学蒙特卡罗方法进行模拟,以研究配体诱导的受体聚集的动力学,并研究配体-受体相互作用的动力学和平衡如何受到受体聚集构型的空间限制以及循环受体聚集形成的影响。结果表明,形成环状受体二聚体的线性链可能对产生分泌信号很重要。限制受体聚集和短暂形成小受体聚集的空间效应也可能很重要。