Centre de Biophysique Moléculaire CNRS UPR 4301, University of Orléans and Inserm, rue Charles Sadron, 45071 Orléans Cedex 2, France.
Curr Opin Biotechnol. 2010 Oct;21(5):640-5. doi: 10.1016/j.copbio.2010.07.003. Epub 2010 Jul 30.
Chemical vectors for non-viral gene delivery are based on engineered DNA nanoparticles produced with various range of macromolecules suitable to mimic some viral functions required for gene transfer. Many efforts have been undertaken these past years to identify cellular barriers that have to be passed for this issue. Here, we summarize the current status of knowledge on the uptake mechanism of DNA nanoparticles made with polymers and liposomes, their endosomal escape, cytosolic diffusion, and nuclear import of pDNA. Studies reported these past years regarding pDNA nanoparticles endocytosis indicated that there is no clear evident relationship between the ways of entry and the transfection efficiency. By contrast, the sequestration of pDNA in intracellular vesicles and the low number of pDNA close to the nuclear envelop are identified as the major intracellular barriers. So, intensive investigations to increase the cytosolic delivery of pDNA and its migration toward nuclear pores make sense to bring the transfection efficiency closer to that of viruses.
化学载体用于非病毒基因传递是基于用各种大分子工程化的 DNA 纳米颗粒,这些大分子适合模拟某些病毒基因转移所需的功能。多年来,人们已经做出了许多努力来确定需要克服的细胞障碍。在这里,我们总结了聚合物和脂质体 DNA 纳米颗粒摄取机制的最新研究进展,包括内体逃逸、细胞质扩散和 pDNA 的核内输入。过去几年关于 pDNA 纳米颗粒内吞作用的研究表明,进入方式和转染效率之间没有明显的关系。相比之下,pDNA 被隔离在细胞内囊泡中,以及靠近核包膜的 pDNA 数量较少,被确定为主要的细胞内障碍。因此,为了提高 pDNA 的细胞质传递和向核孔的迁移,进行了大量的研究,以使转染效率更接近病毒。