Suppr超能文献

泛素-蛋白酶体介导的蛋白水解在神经系统疾病中的作用。

Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease.

作者信息

Hegde Ashok N, Upadhya Sudarshan C

机构信息

Department of Neurology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.

出版信息

Biochim Biophys Acta. 2011 Feb;1809(2):128-40. doi: 10.1016/j.bbagrm.2010.07.006. Epub 2010 Aug 3.

Abstract

Proteolysis by the ubiquitin-proteasome pathway (UPP) is now widely recognized as a molecular mechanism controlling myriad normal functions in the nervous system. Also, this pathway is intimately linked to many diseases and disorders of the brain. Among the diseases connected to the UPP are neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Perturbation in the UPP is also believed to play a causative role in mental disorders such as Angelman syndrome. The pathology of neurodegenerative diseases is characterized by abnormal deposition of insoluble protein aggregates or inclusion bodies within neurons. The ubiquitinated protein aggregates are believed to result from dysfunction of the UPP or from structural changes in the protein substrates which prevent their recognition and degradation by the UPP. An early effect of abnormal UPP in diseases of the nervous system is likely to be impairment of synaptic function. Here we discuss the UPP and its physiological roles in the nervous system and how alterations in the UPP relate to development of nervous system diseases. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!

摘要

泛素-蛋白酶体途径(UPP)介导的蛋白质水解作用如今已被广泛认为是一种控制神经系统中无数正常功能的分子机制。此外,该途径与许多脑部疾病和功能紊乱密切相关。与UPP相关的疾病包括神经退行性疾病,如阿尔茨海默病、帕金森病和亨廷顿病。UPP的紊乱也被认为在诸如天使综合征等精神疾病中起致病作用。神经退行性疾病的病理学特征是神经元内出现不溶性蛋白质聚集体或包涵体的异常沉积。泛素化的蛋白质聚集体被认为是由UPP功能障碍或蛋白质底物的结构变化导致的,这些变化阻止了它们被UPP识别和降解。UPP异常在神经系统疾病中的早期影响可能是突触功能受损。在此,我们讨论UPP及其在神经系统中的生理作用,以及UPP的改变与神经系统疾病发展的关系。本文是名为“26S蛋白酶体:当降解远远不够时!”的特刊的一部分。

相似文献

1
Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease.
Biochim Biophys Acta. 2011 Feb;1809(2):128-40. doi: 10.1016/j.bbagrm.2010.07.006. Epub 2010 Aug 3.
2
Ubiquitin-Proteasome-Mediated Protein Degradation and Disorders of the Central Nervous System.
Int J Mol Sci. 2025 Jan 24;26(3):966. doi: 10.3390/ijms26030966.
3
Ubiquitin-proteasome pathway components as therapeutic targets for CNS maladies.
Curr Pharm Des. 2005;11(29):3807-28. doi: 10.2174/138161205774580651.
4
Failure of ubiquitin proteasome system: risk for neurodegenerative diseases.
Neurodegener Dis. 2014;14(4):161-75. doi: 10.1159/000367694. Epub 2014 Nov 20.
5
Proteolysis, synaptic plasticity and memory.
Neurobiol Learn Mem. 2017 Feb;138:98-110. doi: 10.1016/j.nlm.2016.09.003. Epub 2016 Sep 7.
6
The ubiquitin-proteasome pathway and synaptic plasticity.
Learn Mem. 2010 Jun 21;17(7):314-27. doi: 10.1101/lm.1504010. Print 2010 Jul.
7
Ubiquitin-proteasome pathway and cellular responses to oxidative stress.
Free Radic Biol Med. 2011 Jul 1;51(1):5-16. doi: 10.1016/j.freeradbiomed.2011.03.031. Epub 2011 Apr 8.
9
Aging and regulated protein degradation: who has the UPPer hand?
Aging Cell. 2007 Oct;6(5):599-606. doi: 10.1111/j.1474-9726.2007.00329.x. Epub 2007 Aug 6.

引用本文的文献

1
Genetic Influences on the Developing Young Brain and Risk for Neuropsychiatric Disorders.
Biol Psychiatry. 2023 May 15;93(10):905-920. doi: 10.1016/j.biopsych.2023.01.013. Epub 2023 Jan 28.
5
Genome-Wide Association Analysis of Neonatal White Matter Microstructure.
Cereb Cortex. 2021 Jan 5;31(2):933-948. doi: 10.1093/cercor/bhaa266.
8
Common and Rare Genetic Risk Factors Converge in Protein Interaction Networks Underlying Schizophrenia.
Front Genet. 2018 Sep 28;9:434. doi: 10.3389/fgene.2018.00434. eCollection 2018.
9
The Comprehensive Therapy of Electroacupuncture Promotes Regeneration of Nerve Fibers and Motor Function Recovery in Rats after Spinal Cord Injury.
Evid Based Complement Alternat Med. 2018 May 9;2018:7568697. doi: 10.1155/2018/7568697. eCollection 2018.
10
Exploring microRNA Biomarker for Amyotrophic Lateral Sclerosis.
Int J Mol Sci. 2018 Apr 28;19(5):1318. doi: 10.3390/ijms19051318.

本文引用的文献

1
The ubiquitin-proteasome pathway and synaptic plasticity.
Learn Mem. 2010 Jun 21;17(7):314-27. doi: 10.1101/lm.1504010. Print 2010 Jul.
2
The 26S proteasome: assembly and function of a destructive machine.
Trends Biochem Sci. 2010 Nov;35(11):634-42. doi: 10.1016/j.tibs.2010.05.005. Epub 2010 Jun 10.
3
The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc.
Cell. 2010 Mar 5;140(5):704-16. doi: 10.1016/j.cell.2010.01.026.
4
Parkin-mediated ubiquitin signalling in aggresome formation and autophagy.
Biochem Soc Trans. 2010 Feb;38(Pt 1):144-9. doi: 10.1042/BST0380144.
5
Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity.
Biol Chem. 2010 Feb-Mar;391(2-3):163-169. doi: 10.1515/bc.2010.021.
6
Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening.
Mol Cell. 2009 Dec 11;36(5):794-804. doi: 10.1016/j.molcel.2009.11.015.
7
Building ubiquitin chains: E2 enzymes at work.
Nat Rev Mol Cell Biol. 2009 Nov;10(11):755-64. doi: 10.1038/nrm2780.
8
Reversal of long-term dendritic spine alterations in Alzheimer disease models.
Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16877-82. doi: 10.1073/pnas.0908706106. Epub 2009 Sep 14.
9
The emerging complexity of protein ubiquitination.
Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937.
10
The molecular links between TDP-43 dysfunction and neurodegeneration.
Adv Genet. 2009;66:1-34. doi: 10.1016/S0065-2660(09)66001-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验