Suppr超能文献

乳酸脱氢酶 A 在维持肺微血管内皮细胞增殖的有氧糖酵解中起关键作用。

Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation.

机构信息

Depts. of Pharmacology, Univ. of South Alabama, Mobile, AL 36688, USA.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2010 Oct;299(4):L513-22. doi: 10.1152/ajplung.00274.2009. Epub 2010 Jul 30.

Abstract

Pulmonary microvascular endothelial cells possess both highly proliferative and angiogenic capacities, yet it is unclear how these cells sustain the metabolic requirements essential for such growth. Rapidly proliferating cells rely on aerobic glycolysis to sustain growth, which is characterized by glucose consumption, glucose fermentation to lactate, and lactic acidosis, all in the presence of sufficient oxygen concentrations. Lactate dehydrogenase A converts pyruvate to lactate necessary to sustain rapid flux through glycolysis. We therefore tested the hypothesis that pulmonary microvascular endothelial cells express lactate dehydrogenase A necessary to utilize aerobic glycolysis and support their growth. Pulmonary microvascular endothelial cell (PMVEC) growth curves were conducted over a 7-day period. PMVECs consumed glucose, converted glucose into lactate, and acidified the media. Restricting extracellular glucose abolished the lactic acidosis and reduced PMVEC growth, as did replacing glucose with galactose. In contrast, slow-growing pulmonary artery endothelial cells (PAECs) minimally consumed glucose and did not develop a lactic acidosis throughout the growth curve. Oxygen consumption was twofold higher in PAECs than in PMVECs, yet total cellular ATP concentrations were twofold higher in PMVECs. Glucose transporter 1, hexokinase-2, and lactate dehydrogenase A were all upregulated in PMVECs compared with their macrovascular counterparts. Inhibiting lactate dehydrogenase A activity and expression prevented lactic acidosis and reduced PMVEC growth. Thus PMVECs utilize aerobic glycolysis to sustain their rapid growth rates, which is dependent on lactate dehydrogenase A.

摘要

肺微血管内皮细胞具有高度增殖和血管生成能力,但目前尚不清楚这些细胞如何维持其生长所必需的代谢需求。快速增殖的细胞依赖有氧糖酵解来维持生长,其特征是葡萄糖消耗、葡萄糖发酵为乳酸以及乳酸酸中毒,所有这些都发生在氧浓度足够的情况下。乳酸脱氢酶 A 将丙酮酸转化为乳酸,以维持糖酵解的快速通量。因此,我们检验了这样一个假设,即肺微血管内皮细胞表达乳酸脱氢酶 A,这是利用有氧糖酵解和支持其生长所必需的。进行了为期 7 天的肺微血管内皮细胞 (PMVEC) 生长曲线实验。PMVEC 消耗葡萄糖,将葡萄糖转化为乳酸,并使培养基酸化。限制细胞外葡萄糖会消除乳酸酸中毒并减少 PMVEC 生长,用半乳糖代替葡萄糖也是如此。相比之下,生长缓慢的肺动脉内皮细胞 (PAEC) 在整个生长曲线中仅少量消耗葡萄糖,并且不会发生乳酸酸中毒。PAEC 中的耗氧量是 PMVEC 的两倍,但 PMVEC 中的总细胞 ATP 浓度是 PAEC 的两倍。与大血管内皮细胞相比,PMVEC 中葡萄糖转运蛋白 1、己糖激酶-2 和乳酸脱氢酶 A 均上调。抑制乳酸脱氢酶 A 的活性和表达可防止乳酸酸中毒并减少 PMVEC 生长。因此,PMVEC 利用有氧糖酵解来维持其快速的生长速度,这依赖于乳酸脱氢酶 A。

相似文献

8
Relationships between LDH-A, lactate, and metastases in 4T1 breast tumors.4T1 乳腺癌肿瘤中 LDH-A、乳酸与转移之间的关系。
Clin Cancer Res. 2013 Sep 15;19(18):5158-69. doi: 10.1158/1078-0432.CCR-12-3300. Epub 2013 Jul 5.

引用本文的文献

2
The vascular endothelium as decision maker in lung injury.血管内皮在肺损伤中作为决策者的作用。
Front Cell Dev Biol. 2025 Jul 7;13:1564627. doi: 10.3389/fcell.2025.1564627. eCollection 2025.

本文引用的文献

2
Energetics, epigenetics, mitochondrial genetics.能量学、表观遗传学、线粒体遗传学。
Mitochondrion. 2010 Jan;10(1):12-31. doi: 10.1016/j.mito.2009.09.006. Epub 2009 Sep 29.
7
Biochemistry. A glucose-to-gene link.生物化学。葡萄糖与基因的联系。
Science. 2009 May 22;324(5930):1021-2. doi: 10.1126/science.1174665.
10
Cancer cell metabolism: Warburg and beyond.癌细胞代谢:从瓦伯格效应到其他方面
Cell. 2008 Sep 5;134(5):703-7. doi: 10.1016/j.cell.2008.08.021.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验