Suppr超能文献

能量学、表观遗传学、线粒体遗传学。

Energetics, epigenetics, mitochondrial genetics.

机构信息

Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California, Irvine, CA 92697-3940, USA.

出版信息

Mitochondrion. 2010 Jan;10(1):12-31. doi: 10.1016/j.mito.2009.09.006. Epub 2009 Sep 29.

Abstract

The epigenome has been hypothesized to provide the interface between the environment and the nuclear DNA (nDNA) genes. Key factors in the environment are the availability of calories and demands on the organism's energetic capacity. Energy is funneled through glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the cellular bioenergetic systems. Since there are thousands of bioenergetic genes dispersed across the chromosomes and mitochondrial DNA (mtDNA), both cis and trans regulation of the nDNA genes is required. The bioenergetic systems convert environmental calories into ATP, acetyl-Coenzyme A (acetyl-CoA), s-adenosyl-methionine (SAM), and reduced NAD(+). When calories are abundant, ATP and acetyl-CoA phosphorylate and acetylate chromatin, opening the nDNA for transcription and replication. When calories are limiting, chromatin phosphorylation and acetylation are lost and gene expression is suppressed. DNA methylation via SAM can also be modulated by mitochondrial function. Phosphorylation and acetylation are also pivotal to regulating cellular signal transduction pathways. Therefore, bioenergetics provides the interface between the environment and the epigenome. Consistent with this conclusion, the clinical phenotypes of bioenergetic diseases are strikingly similar to those observed in epigenetic diseases (Angelman, Rett, Fragile X Syndromes, the laminopathies, cancer, etc.), and an increasing number of epigenetic diseases are being associated with mitochondrial dysfunction. This bioenergetic-epigenomic hypothesis has broad implications for the etiology, pathophysiology, and treatment of a wide range of common diseases.

摘要

表观基因组被假设为提供环境与核 DNA(nDNA)基因之间的接口。环境中的关键因素是卡路里的可利用性和对生物体能量能力的需求。能量通过糖酵解和线粒体氧化磷酸化(OXPHOS),即细胞生物能系统,进行传递。由于有成千上万的生物能基因分散在染色体和线粒体 DNA(mtDNA)中,因此需要对 nDNA 基因进行顺式和反式调控。生物能系统将环境中的卡路里转化为 ATP、乙酰辅酶 A(acetyl-CoA)、s-腺苷甲硫氨酸(SAM)和还原型 NAD(+)。当卡路里充足时,ATP 和乙酰-CoA 使染色质磷酸化和乙酰化,为转录和复制打开 nDNA。当卡路里有限时,染色质的磷酸化和乙酰化丢失,基因表达受到抑制。通过 SAM 进行的 DNA 甲基化也可以通过线粒体功能进行调节。磷酸化和乙酰化对于调节细胞信号转导途径也至关重要。因此,生物能为环境与表观基因组之间提供了接口。与这一结论一致的是,生物能疾病的临床表型与表观遗传疾病(如 Angelman、Rett、脆性 X 综合征、层粘连蛋白病、癌症等)观察到的表型非常相似,并且越来越多的表观遗传疾病与线粒体功能障碍有关。这一生物能-表观基因组假说对广泛的常见疾病的病因学、病理生理学和治疗具有广泛的影响。

相似文献

1
Energetics, epigenetics, mitochondrial genetics.
Mitochondrion. 2010 Jan;10(1):12-31. doi: 10.1016/j.mito.2009.09.006. Epub 2009 Sep 29.
3
Mitochondria, bioenergetics, and the epigenome in eukaryotic and human evolution.
Cold Spring Harb Symp Quant Biol. 2009;74:383-93. doi: 10.1101/sqb.2009.74.031. Epub 2009 Dec 2.
4
Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):16028-16035. doi: 10.1073/pnas.1906896116. Epub 2019 Jun 28.
5
A mitochondrial bioenergetic etiology of disease.
J Clin Invest. 2013 Apr;123(4):1405-12. doi: 10.1172/JCI61398. Epub 2013 Apr 1.
6
Mitochondrial DNA mutations in disease and aging.
Environ Mol Mutagen. 2010 Jun;51(5):440-50. doi: 10.1002/em.20586.
7
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
8
Mitochondrial genetic medicine.
Nat Genet. 2018 Dec;50(12):1642-1649. doi: 10.1038/s41588-018-0264-z. Epub 2018 Oct 29.
9
Mitochondrial energetics and therapeutics.
Annu Rev Pathol. 2010;5:297-348. doi: 10.1146/annurev.pathol.4.110807.092314.
10
Significance of Mitochondria DNA Mutations in Diseases.
Adv Exp Med Biol. 2017;1038:219-230. doi: 10.1007/978-981-10-6674-0_15.

引用本文的文献

1
Mitochondrial methylation is linked to sexually dimorphic growth in Nile tilapia ().
Front Cell Dev Biol. 2025 Aug 5;13:1643817. doi: 10.3389/fcell.2025.1643817. eCollection 2025.
3
Mitophagy's impacts on cancer and neurodegenerative diseases: implications for future therapies.
J Hematol Oncol. 2025 Aug 1;18(1):78. doi: 10.1186/s13045-025-01727-w.
5
Estrogen-related receptors regulate innate and adaptive muscle mitochondrial energetics through cooperative and distinct actions.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2426179122. doi: 10.1073/pnas.2426179122. Epub 2025 May 12.
6
Application of Metabolomics in Carcinogenesis and Cancer Prevention by Dietary Phytochemicals.
Curr Pharmacol Rep. 2025;11(1):12. doi: 10.1007/s40495-025-00396-0. Epub 2025 Feb 6.
7
Evolution, genetic diversity, and health.
Nat Med. 2025 Mar;31(3):751-761. doi: 10.1038/s41591-025-03558-1. Epub 2025 Mar 7.
8
Doxorubicin-Induced Cardiac Remodeling: Mechanisms and Mitigation Strategies.
Cardiovasc Drugs Ther. 2025 Feb 26. doi: 10.1007/s10557-025-07673-6.
9
Aging-associated accumulation of mitochondrial DNA mutations in tumor origin.
Life Med. 2022 Aug 17;1(2):149-167. doi: 10.1093/lifemedi/lnac014. eCollection 2022 Oct.

本文引用的文献

1
Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome.
Neurosci Lett. 2011 Jan 7;487(2):129-33. doi: 10.1016/j.neulet.2009.06.079. Epub 2009 Jun 27.
2
ATP-citrate lyase links cellular metabolism to histone acetylation.
Science. 2009 May 22;324(5930):1076-80. doi: 10.1126/science.1164097.
3
Biochemistry. A glucose-to-gene link.
Science. 2009 May 22;324(5930):1021-2. doi: 10.1126/science.1174665.
4
Metabolism control by the circadian clock and vice versa.
Nat Struct Mol Biol. 2009 May;16(5):462-7. doi: 10.1038/nsmb.1595.
5
Circadian rhythms. A circadian loop asSIRTs itself.
Science. 2009 May 1;324(5927):598-9. doi: 10.1126/science.1174132.
6
Bmi1 regulates mitochondrial function and the DNA damage response pathway.
Nature. 2009 May 21;459(7245):387-392. doi: 10.1038/nature08040. Epub 2009 Apr 29.
7
Mitochondrial DNA haplogroups influence lipoatrophy after highly active antiretroviral therapy.
J Acquir Immune Defic Syndr. 2009 Jun 1;51(2):111-6. doi: 10.1097/QAI.0b013e3181a324d6.
8
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.
Science. 2009 May 1;324(5927):651-4. doi: 10.1126/science.1171641. Epub 2009 Mar 19.
9
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.
Science. 2009 May 1;324(5927):654-7. doi: 10.1126/science.1170803. Epub 2009 Mar 12.
10
A novel function for fragile X mental retardation protein in translational activation.
PLoS Biol. 2009 Jan 20;7(1):e16. doi: 10.1371/journal.pbio.1000016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验