Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California, Irvine, CA 92697-3940, USA.
Mitochondrion. 2010 Jan;10(1):12-31. doi: 10.1016/j.mito.2009.09.006. Epub 2009 Sep 29.
The epigenome has been hypothesized to provide the interface between the environment and the nuclear DNA (nDNA) genes. Key factors in the environment are the availability of calories and demands on the organism's energetic capacity. Energy is funneled through glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the cellular bioenergetic systems. Since there are thousands of bioenergetic genes dispersed across the chromosomes and mitochondrial DNA (mtDNA), both cis and trans regulation of the nDNA genes is required. The bioenergetic systems convert environmental calories into ATP, acetyl-Coenzyme A (acetyl-CoA), s-adenosyl-methionine (SAM), and reduced NAD(+). When calories are abundant, ATP and acetyl-CoA phosphorylate and acetylate chromatin, opening the nDNA for transcription and replication. When calories are limiting, chromatin phosphorylation and acetylation are lost and gene expression is suppressed. DNA methylation via SAM can also be modulated by mitochondrial function. Phosphorylation and acetylation are also pivotal to regulating cellular signal transduction pathways. Therefore, bioenergetics provides the interface between the environment and the epigenome. Consistent with this conclusion, the clinical phenotypes of bioenergetic diseases are strikingly similar to those observed in epigenetic diseases (Angelman, Rett, Fragile X Syndromes, the laminopathies, cancer, etc.), and an increasing number of epigenetic diseases are being associated with mitochondrial dysfunction. This bioenergetic-epigenomic hypothesis has broad implications for the etiology, pathophysiology, and treatment of a wide range of common diseases.
表观基因组被假设为提供环境与核 DNA(nDNA)基因之间的接口。环境中的关键因素是卡路里的可利用性和对生物体能量能力的需求。能量通过糖酵解和线粒体氧化磷酸化(OXPHOS),即细胞生物能系统,进行传递。由于有成千上万的生物能基因分散在染色体和线粒体 DNA(mtDNA)中,因此需要对 nDNA 基因进行顺式和反式调控。生物能系统将环境中的卡路里转化为 ATP、乙酰辅酶 A(acetyl-CoA)、s-腺苷甲硫氨酸(SAM)和还原型 NAD(+)。当卡路里充足时,ATP 和乙酰-CoA 使染色质磷酸化和乙酰化,为转录和复制打开 nDNA。当卡路里有限时,染色质的磷酸化和乙酰化丢失,基因表达受到抑制。通过 SAM 进行的 DNA 甲基化也可以通过线粒体功能进行调节。磷酸化和乙酰化对于调节细胞信号转导途径也至关重要。因此,生物能为环境与表观基因组之间提供了接口。与这一结论一致的是,生物能疾病的临床表型与表观遗传疾病(如 Angelman、Rett、脆性 X 综合征、层粘连蛋白病、癌症等)观察到的表型非常相似,并且越来越多的表观遗传疾病与线粒体功能障碍有关。这一生物能-表观基因组假说对广泛的常见疾病的病因学、病理生理学和治疗具有广泛的影响。