Department of Fibre and Polymer Technology, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Nat Nanotechnol. 2010 Aug;5(8):584-8. doi: 10.1038/nnano.2010.155. Epub 2010 Aug 1.
Nanostructured biological materials inspire the creation of materials with tunable mechanical properties. Strong cellulose nanofibrils derived from bacteria or wood can form ductile or tough networks that are suitable as functional materials. Here, we show that freeze-dried bacterial cellulose nanofibril aerogels can be used as templates for making lightweight porous magnetic aerogels, which can be compacted into a stiff magnetic nanopaper. The 20-70-nm-thick cellulose nanofibrils act as templates for the non-agglomerated growth of ferromagnetic cobalt ferrite nanoparticles (diameter, 40-120 nm). Unlike solvent-swollen gels and ferrogels, our magnetic aerogel is dry, lightweight, porous (98%), flexible, and can be actuated by a small household magnet. Moreover, it can absorb water and release it upon compression. Owing to their flexibility, high porosity and surface area, these aerogels are expected to be useful in microfluidics devices and as electronic actuators.
纳米结构生物材料激发了具有可调机械性能材料的创造。源自细菌或木材的强纤维素纳米纤维可以形成适合用作功能材料的韧性或坚韧的网络。在这里,我们展示了冻干细菌纤维素纳米纤维气凝胶可用作制造轻量多孔磁性气凝胶的模板,这些模板可以被压缩成硬磁性纳米纸。20-70nm 厚的纤维素纳米纤维充当非团聚的铁磁性钴铁氧体纳米颗粒(直径为 40-120nm)的模板。与溶剂溶胀凝胶和铁凝胶不同,我们的磁性气凝胶是干燥的、轻量级的、多孔的(98%)、灵活的,并且可以通过小家用磁铁来驱动。此外,它可以在压缩时吸收和释放水。由于其柔韧性、高孔隙率和表面积,这些气凝胶有望在微流控装置和电子致动器中得到应用。