Suppr超能文献

中性粒细胞在分叉通道内趋化运动中的定向决策。

Directional decisions during neutrophil chemotaxis inside bifurcating channels.

机构信息

BioMEMS Resource Center, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129, USA.

出版信息

Integr Biol (Camb). 2010 Nov;2(11-12):639-47. doi: 10.1039/c0ib00011f. Epub 2010 Aug 2.

Abstract

The directional migration of human neutrophils in classical chemotaxis assays is often described as a "biased random walk" implying significant randomness in speed and directionality. However, these experiments are inconsistent with in vivo observations, where neutrophils can navigate effectively through complex tissue microenvironments towards their targets. Here, we demonstrate a novel biomimetic assay for neutrophil chemotaxis using enclosed microfluidic channels. Remarkably, under these enclosed conditions, neutrophils recapitulate the highly robust and efficient navigation observed in vivo. In straight channels, neutrophils undergo sustained, unidirectional motion towards a chemoattractant source. In more complex maze-like geometries, neutrophils are able to select the most direct route over 90% of the time. Finally, at symmetric bifurcations, neutrophils split their leading edge into two sections and a "tug of war" ensues. The competition between the two new leading edges is ultimately resolved by stochastic, symmetry-breaking behavior. This behavior is suggestive of directional decision-making localized at the leading edge and a signaling role played by the cellular cytoskeleton.

摘要

在经典趋化性测定中,人中性粒细胞的定向迁移常被描述为“偏向随机游走”,这意味着速度和方向性存在显著的随机性。然而,这些实验与体内观察结果不一致,在体内观察中,中性粒细胞可以有效地在复杂的组织微环境中导航并朝向其靶标。在这里,我们使用封闭的微流控通道展示了一种用于中性粒细胞趋化性的新型仿生测定法。值得注意的是,在这些封闭条件下,中性粒细胞再现了体内观察到的高度稳健和高效的导航。在直通道中,中性粒细胞朝着化学引诱剂源进行持续的单向运动。在更复杂的类迷宫几何形状中,中性粒细胞能够在 90%以上的时间内选择最直接的路线。最后,在对称分叉处,中性粒细胞将其前缘分为两部分,然后进行“拔河”。两个新前缘之间的竞争最终通过随机、打破对称的行为来解决。这种行为表明定向决策定位于前缘,并且细胞细胞骨架起着信号作用。

相似文献

1
Directional decisions during neutrophil chemotaxis inside bifurcating channels.
Integr Biol (Camb). 2010 Nov;2(11-12):639-47. doi: 10.1039/c0ib00011f. Epub 2010 Aug 2.
2
Adaptive-control model for neutrophil orientation in the direction of chemical gradients.
Biophys J. 2009 May 20;96(10):3897-916. doi: 10.1016/j.bpj.2008.12.3967.
3
Multifactorial assessment of neutrophil chemotaxis efficiency from a drop of blood.
J Leukoc Biol. 2022 Jun;111(6):1175-1184. doi: 10.1002/JLB.3MA0122-378RR. Epub 2022 Jan 31.
6
Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets.
J Leukoc Biol. 2016 Jul;100(1):241-7. doi: 10.1189/jlb.5TA0715-310RR. Epub 2016 Jan 27.
7
Chemotaxis: signalling the way forward.
Nat Rev Mol Cell Biol. 2004 Aug;5(8):626-34. doi: 10.1038/nrm1435.
8
Chemotaxing neutrophils enter alternate branches at capillary bifurcations.
Nat Commun. 2020 May 13;11(1):2385. doi: 10.1038/s41467-020-15476-6.
9
How do leucocytes perceive chemical gradients?
FEMS Microbiol Immunol. 1990 Dec;2(5-6):303-11. doi: 10.1111/j.1574-6968.1990.tb03533.x.
10
Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis.
Mol Biol Cell. 1999 Apr;10(4):1163-78. doi: 10.1091/mbc.10.4.1163.

引用本文的文献

2
Confinement by Liquid-Liquid Interface Replicates In Vivo Neutrophil Deformations and Elicits Bleb-Based Migration.
Adv Sci (Weinh). 2025 Jun;12(21):e2414024. doi: 10.1002/advs.202414024. Epub 2025 Mar 28.
4
5
High-throughput co-culture system for analysis of spatiotemporal cell-cell signaling.
Biosens Bioelectron. 2023 Apr 1;225:115089. doi: 10.1016/j.bios.2023.115089. Epub 2023 Jan 30.
6
Engineering physical microenvironments to study innate immune cell biophysics.
APL Bioeng. 2022 Sep 20;6(3):031504. doi: 10.1063/5.0098578. eCollection 2022 Sep.
7
Multifactorial assessment of neutrophil chemotaxis efficiency from a drop of blood.
J Leukoc Biol. 2022 Jun;111(6):1175-1184. doi: 10.1002/JLB.3MA0122-378RR. Epub 2022 Jan 31.
8
Characterization of immune cell migration using microfabrication.
Biophys Rev. 2021 Feb 11;13(2):185-202. doi: 10.1007/s12551-021-00787-9. eCollection 2021 Apr.
9
Cell Sequence and Mitosis Affect Fibroblast Directional Decision-Making During Chemotaxis in Microfluidic Mazes.
Cell Mol Bioeng. 2018 Aug 27;11(6):483-494. doi: 10.1007/s12195-018-0551-x. eCollection 2018 Dec.

本文引用的文献

1
Understanding eukaryotic chemotaxis: a pseudopod-centred view.
Nat Rev Mol Cell Biol. 2010 Jun;11(6):453-8. doi: 10.1038/nrm2905. Epub 2010 May 6.
2
Neutrophil motility in vivo using zebrafish.
Methods Mol Biol. 2009;571:151-66. doi: 10.1007/978-1-60761-198-1_10.
3
Navigation of chemotactic cells by parallel signaling to pseudopod persistence and orientation.
PLoS One. 2009 Aug 31;4(8):e6842. doi: 10.1371/journal.pone.0006842.
4
Collagen-based cell migration models in vitro and in vivo.
Semin Cell Dev Biol. 2009 Oct;20(8):931-41. doi: 10.1016/j.semcdb.2009.08.005. Epub 2009 Aug 12.
5
Adaptive-control model for neutrophil orientation in the direction of chemical gradients.
Biophys J. 2009 May 20;96(10):3897-916. doi: 10.1016/j.bpj.2008.12.3967.
6
Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain.
Science. 2008 Dec 12;322(5908):1705-10. doi: 10.1126/science.1159894.
7
On the spontaneous emergence of cell polarity.
Nature. 2008 Aug 14;454(7206):886-9. doi: 10.1038/nature07119.
8
Force-generation and dynamic instability of microtubule bundles.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8920-5. doi: 10.1073/pnas.0710311105. Epub 2008 Jun 24.
9
Rapid leukocyte migration by integrin-independent flowing and squeezing.
Nature. 2008 May 1;453(7191):51-5. doi: 10.1038/nature06887.
10
Polar stimulation and constrained cell migration in microfluidic channels.
Lab Chip. 2007 Dec;7(12):1783-90. doi: 10.1039/b710524j. Epub 2007 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验