Suppr超能文献

多维世界中的药物发现:系统、模式和网络。

Drug discovery in a multidimensional world: systems, patterns, and networks.

机构信息

Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

J Cardiovasc Transl Res. 2010 Oct;3(5):438-47. doi: 10.1007/s12265-010-9214-6. Epub 2010 Jul 31.

Abstract

Despite great strides in revealing and understanding the physiological and molecular bases of cardiovascular disease, efforts to translate this understanding into needed therapeutic interventions continue to lag far behind the initial discoveries. Although pharmaceutical companies continue to increase investments into research and development, the number of drugs gaining federal approval is in decline. Many factors underlie these trends, and a vast number of technological and scientific innovations are being sought through efforts to reinvigorate drug discovery pipelines. Recent advances in molecular profiling technologies and development of sophisticated computational approaches for analyzing these data are providing new, systems-oriented approaches towards drug discovery. Unlike the traditional approach to drug discovery which is typified by a one-drug-one-target mindset, systems-oriented approaches to drug discovery leverage the parallelism and high-dimensionality of the molecular data to construct more comprehensive molecular models that aim to model broader bimolecular systems. These models offer a means to explore complex molecular states (e.g., disease) where thousands to millions of molecular entities comprising multiple molecular data types (e.g., proteomics and gene expression) can be evaluated simultaneously as components of a cohesive biomolecular system. In this paper, we discuss emerging approaches towards systems-oriented drug discovery and contrast these efforts with the traditional, unidimensional approach to drug discovery. We also highlight several applications of these system-oriented approaches across various aspects of drug discovery, including target discovery, drug repositioning and drug toxicity. When available, specific applications to cardiovascular drug discovery are highlighted and discussed.

摘要

尽管在揭示和理解心血管疾病的生理和分子基础方面取得了巨大进展,但将这种理解转化为所需的治疗干预措施的努力仍远远落后于最初的发现。尽管制药公司继续增加对研究和开发的投资,但获得联邦批准的药物数量正在下降。许多因素导致了这些趋势,为了重振药物发现管道,正在寻求大量的技术和科学创新。分子谱分析技术的最新进展以及用于分析这些数据的复杂计算方法的发展,为药物发现提供了新的、面向系统的方法。与传统的药物发现方法不同,后者的特点是一种药物对应一个靶点,面向系统的药物发现方法利用分子数据的并行性和高维性来构建更全面的分子模型,旨在模拟更广泛的双分子系统。这些模型提供了一种探索复杂分子状态(例如疾病)的方法,其中可以同时评估数千到数百万个分子实体,这些实体由多种分子数据类型(例如蛋白质组学和基因表达)组成,作为一个有凝聚力的生物分子系统的组成部分。在本文中,我们讨论了面向系统的药物发现的新兴方法,并将这些方法与传统的、一维的药物发现方法进行了对比。我们还强调了这些系统方法在药物发现的各个方面的几个应用,包括靶点发现、药物再定位和药物毒性。在有可用信息的情况下,突出并讨论了这些系统方法在心血管药物发现中的具体应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验