Suppr超能文献

学习声音序列的连续信号偏置。

Successive-signal biasing for a learned sound sequence.

机构信息

School of Life Sciences, Institute of Cognitive Neuroscience, East China Normal University, Shanghai 200062, China.

出版信息

Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14839-44. doi: 10.1073/pnas.1009433107. Epub 2010 Aug 2.

Abstract

Adult rats were trained to detect the occurrence of a two-element sound sequence in a background of nine other nontarget sound pairs. Training resulted in a modest, enduring, static expansion of the cortical areas of representation of both target stimulus sounds. More importantly, once the initial stimulus A in the target A-B sequence was presented, the cortical "map" changed dynamically, specifically to exaggerate further the representation of the "anticipated" stimulus B. If B occurred, it was represented over a larger cortical area by more strongly excited, more coordinated, and more selectively responding neurons. This biasing peaked at the expected time of B onset with respect to A onset. No dynamic biasing of responses was recorded for any sound presented in a nontarget pair. Responses to nontarget frequencies flanking the representation of B were reduced in area and in response strength only after the presentation of A at the expected time of B onset. This study shows that cortical areas are not representationally static but, to the contrary, can be biased moment by moment in time as a function of behavioral context.

摘要

成年大鼠接受训练,以在背景中出现的九个其他非目标声音对中检测到两个元素声音序列的出现。训练导致目标刺激声音的代表的皮质区域适度、持久、静态地扩张。更重要的是,一旦目标 A-B 序列中的初始刺激 A 呈现,皮质“图谱”就会动态变化,特别是进一步夸大对“预期”刺激 B 的表示。如果 B 出现,则通过更强烈兴奋、更协调和更有选择性响应的神经元在更大的皮质区域中表示。这种偏向在相对于 A 起始的 B 起始时间达到峰值。在非目标对中呈现的任何声音都没有记录到响应的动态偏向。只有在预期的 B 起始时间呈现 A 之后,B 的表示周围的非目标频率的响应强度和区域才会减小。这项研究表明,皮质区域的表示不是静态的,而是相反,可以根据行为背景实时偏向。

相似文献

1
Successive-signal biasing for a learned sound sequence.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14839-44. doi: 10.1073/pnas.1009433107. Epub 2010 Aug 2.
3
Refining cortical representation of sound azimuths by auditory discrimination training.
J Neurosci. 2013 Jun 5;33(23):9693-8. doi: 10.1523/JNEUROSCI.0158-13.2013.
4
Modifying the Adult Rat Tonotopic Map with Sound Exposure Produces Frequency Discrimination Deficits That Are Recovered with Training.
J Neurosci. 2020 Mar 11;40(11):2259-2268. doi: 10.1523/JNEUROSCI.1445-19.2019. Epub 2020 Feb 5.
5
Evoked Response Strength in Primary Auditory Cortex Predicts Performance in a Spectro-Spatial Discrimination Task in Rats.
J Neurosci. 2019 Jul 31;39(31):6108-6121. doi: 10.1523/JNEUROSCI.0041-18.2019. Epub 2019 Jun 7.
9
Perceptual learning directs auditory cortical map reorganization through top-down influences.
J Neurosci. 2006 May 3;26(18):4970-82. doi: 10.1523/JNEUROSCI.3771-05.2006.
10
Selective corticostriatal plasticity during acquisition of an auditory discrimination task.
Nature. 2015 May 21;521(7552):348-51. doi: 10.1038/nature14225. Epub 2015 Mar 2.

引用本文的文献

1
Multimodal Temporal Pattern Discrimination Is Encoded in Visual Cortical Dynamics.
eNeuro. 2023 Jul 24;10(7). doi: 10.1523/ENEURO.0047-23.2023. Print 2023 Jul.
2
Secondary auditory cortex mediates a sensorimotor mechanism for action timing.
Nat Neurosci. 2022 Mar;25(3):330-344. doi: 10.1038/s41593-022-01025-5. Epub 2022 Mar 7.
3
Differential Short-Term Plasticity of PV and SST Neurons Accounts for Adaptation and Facilitation of Cortical Neurons to Auditory Tones.
J Neurosci. 2020 Nov 25;40(48):9224-9235. doi: 10.1523/JNEUROSCI.0686-20.2020. Epub 2020 Oct 23.
4
Time and information in perceptual adaptation to speech.
Cognition. 2019 Nov;192:103982. doi: 10.1016/j.cognition.2019.05.019. Epub 2019 Jun 21.
5
Short-Term Synaptic Plasticity as a Mechanism for Sensory Timing.
Trends Neurosci. 2018 Oct;41(10):701-711. doi: 10.1016/j.tins.2018.08.001. Epub 2018 Sep 25.
7
The Neural Basis of Timing: Distributed Mechanisms for Diverse Functions.
Neuron. 2018 May 16;98(4):687-705. doi: 10.1016/j.neuron.2018.03.045.
8
Neurocomputational Models of Interval and Pattern Timing.
Curr Opin Behav Sci. 2016 Apr;8:250-257. doi: 10.1016/j.cobeha.2016.01.012. Epub 2016 Feb 12.
9
Auditory-induced neural dynamics in sensory-motor circuitry predict learned temporal and sequential statistics of birdsong.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9641-6. doi: 10.1073/pnas.1606725113. Epub 2016 Aug 9.
10
Short-term second language and music training induces lasting functional brain changes in early childhood.
Child Dev. 2015 Mar-Apr;86(2):394-406. doi: 10.1111/cdev.12297. Epub 2014 Oct 23.

本文引用的文献

1
Developmentally degraded cortical temporal processing restored by training.
Nat Neurosci. 2009 Jan;12(1):26-8. doi: 10.1038/nn.2239. Epub 2008 Dec 14.
2
The prefrontal cortex and the executive control of attention.
Exp Brain Res. 2009 Jan;192(3):489-97. doi: 10.1007/s00221-008-1642-z. Epub 2008 Nov 22.
4
Cerebral processing of emotional prosody--influence of acoustic parameters and arousal.
Neuroimage. 2008 Jan 15;39(2):885-93. doi: 10.1016/j.neuroimage.2007.09.028. Epub 2007 Sep 22.
5
Intensive training in adults refines A1 representations degraded in an early postnatal critical period.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15935-40. doi: 10.1073/pnas.0707348104. Epub 2007 Sep 25.
6
Tone-sequence analysis in the auditory cortex of awake macaque monkeys.
Exp Brain Res. 2008 Jan;184(3):349-61. doi: 10.1007/s00221-007-1109-7. Epub 2007 Sep 13.
8
Perceptual learning directs auditory cortical map reorganization through top-down influences.
J Neurosci. 2006 May 3;26(18):4970-82. doi: 10.1523/JNEUROSCI.3771-05.2006.
9
Neural circuits involved in imitation and perspective-taking.
Neuroimage. 2006 May 15;31(1):429-39. doi: 10.1016/j.neuroimage.2005.11.026. Epub 2006 Jan 10.
10
Specialization of primary auditory cortex processing by sound exposure in the "critical period".
Proc Natl Acad Sci U S A. 2004 May 4;101(18):7170-4. doi: 10.1073/pnas.0401196101. Epub 2004 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验