Cardioprotection Group, Hatter Cardiovascular Research Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
Basic Res Cardiol. 2010 Nov;105(6):751-62. doi: 10.1007/s00395-010-0113-4. Epub 2010 Aug 1.
Our novel proposal is that TNFα exerts a direct effect on mitochondrial respiratory function in the heart, independently of its cell surface receptors. TNFα-induced cardioprotection is known to involve reactive oxygen species (ROS) and sphingolipids. We therefore further propose that this direct mitochondrial effect is mediated via ROS and sphingolipids. The protective concentration of TNFα (0.5 ng/ml) was added to isolated heart mitochondria from black 6 × 129 mice (WT) and double TNF receptor knockout mice (TNFR1&2(-/-)). Respiratory parameters and inner mitochondrial membrane potential were analyzed in the presence/absence of two antioxidants, N-acetyl-L: -cysteine or N-tert-butyl-α-(2-sulfophenyl)nitrone or two antagonists of the sphingolipid pathway, N-oleoylethanolamine (NOE) or imipramine. In WT, TNFα reduced State 3 respiration from 279.3 ± 3 to 119.3 ± 2 (nmol O₂/mg protein/min), increased proton leak from 15.7 ± 0.6% (control) to 36.6 ± 4.4%, and decreased membrane potential by 20.5 ± 3.1% compared to control groups. In TNFR1&2(-/-) mice, TNFα reduced State 3 respiration from 205.2 ± 4 to 75.7 ± 1 (p < 0.05 vs. respective control). In WT mice, both antioxidants added with TNFα restored State 3 respiration to 269.2 ± 2 and 257.6 ± 2, respectively. Imipramine and NOE also restored State 3 respiration to 248.4 ± 2 and 249.0 ± 2, respectively (p < 0.01 vs. TNFα alone). Similarly, both antioxidant and inhibitors of the sphingolipid pathway restored the proton leak to pre-TNF values. TNFα-treated mitochondria or isolated cardiac muscle fibers showed an increase in respiration after anoxia-reoxygenation, but this effect was lost in the presence of an antioxidant or NOE. Similar data were obtained in TNFR1&2(-/-) mice. TNFα exerts a protective effect on respiratory function in isolated mitochondria subjected to an anoxia-reoxygenation insult. This effect appears to be independent of its cell surface receptors, but is likely to be mediated by ROS and sphingolipids.
我们的新提议是,TNFα 对心脏中线粒体的呼吸功能产生直接影响,而不依赖于其细胞表面受体。已知 TNFα 诱导的心脏保护作用涉及活性氧 (ROS) 和鞘脂。因此,我们进一步提出,这种直接的线粒体效应是通过 ROS 和鞘脂介导的。将保护浓度的 TNFα(0.5ng/ml)添加到来自黑 6×129 小鼠(WT)和双重 TNF 受体敲除小鼠(TNFR1&2(-/-))的分离心脏线粒体中。在存在/不存在两种抗氧化剂 N-乙酰-L:-半胱氨酸或 N-叔丁基-α-(2-磺苯基)硝酮或两种鞘脂途径拮抗剂 N-油酰乙醇胺(NOE)或丙咪嗪的情况下,分析呼吸参数和线粒体内膜电位。在 WT 中,TNFα 将状态 3 呼吸从 279.3±3 降低到 119.3±2(nmol O₂/mg 蛋白/min),将质子漏从 15.7±0.6%(对照)增加到 36.6±4.4%,并将膜电位降低 20.5±3.1%与对照组相比。在 TNFR1&2(-/-) 小鼠中,TNFα 将状态 3 呼吸从 205.2±4 降低到 75.7±1(p<0.05 与各自的对照相比)。在 WT 小鼠中,两种抗氧化剂与 TNFα 一起添加,将状态 3 呼吸分别恢复到 269.2±2 和 257.6±2。丙咪嗪和 NOE 也将状态 3 呼吸分别恢复到 248.4±2 和 249.0±2(p<0.01 与 TNFα 单独相比)。同样,两种抗氧化剂和鞘脂途径抑制剂也将质子漏恢复到 TNF 前的值。TNFα 处理的线粒体或分离的心肌纤维在缺氧再氧合后表现出呼吸增加,但在抗氧化剂或 NOE 存在下,这种作用消失。在 TNFR1&2(-/-) 小鼠中也获得了类似的数据。TNFα 对缺氧再氧合损伤的分离线粒体的呼吸功能具有保护作用。这种作用似乎不依赖于其细胞表面受体,但可能是通过 ROS 和鞘脂介导的。