Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, 601 North Caroline Street, Baltimore, MD 21287, USA.
J Digit Imaging. 2011 Jun;24(3):507-15. doi: 10.1007/s10278-010-9316-3.
Decision support systems have been used to promote the practice of evidence-based medicine. Computer-assisted diagnosis can serve as one element of evidence-based radiology. One area where such tools may provide benefit is analysis of vertebral compression fractures (VCFs), which can be a challenge in MRI interpretation. VCFs may be benign or malignant in etiology, and several MRI features may help to make this important distinction. We describe a web-based decision support system for discriminating benign from malignant VCFs as a prototype for a more general diagnostic decision support framework for radiologists. The system has three components: a feature checklist with an image gallery derived from proven reference cases, a prediction model, and a reporting mechanism. The website allows users to input the findings for a case to be interpreted using a structured feature checklist. The image gallery complements the checklist, for clarity and training purposes. The input from the checklist is then used to calculate the likelihood of malignancy by a logistic regression prediction model. Standardized report text is generated that summarizes pertinent positive and negative findings. This computer-assisted diagnosis system demonstrates the integration of three areas where diagnostic decision support can aid radiologists: first, in image interpretation, through feature checklists and illustrative image galleries; second, in feature-based prediction modeling; and third, in structured reporting. We present a diagnostic decision support tool that provides radiologists with evidence-based guidance for discriminating benign from malignant VCF. This model may be useful in other difficult-diagnosis situations and requires further clinical testing.
决策支持系统已被用于促进循证医学实践。计算机辅助诊断可以作为循证放射学的一个要素。这类工具可能在分析椎体压缩性骨折(VCF)方面具有优势,因为 MRI 解读对此类骨折具有一定的挑战性。VCF 在病因学上可能是良性的或恶性的,而几个 MRI 特征可能有助于做出这一重要的鉴别。我们描述了一种用于鉴别良性和恶性 VCF 的基于网络的决策支持系统,作为更通用的放射科诊断决策支持框架的原型。该系统有三个组成部分:带有源自明确参考病例的图像库的特征检查表、预测模型和报告机制。该网站允许用户使用结构化特征检查表输入要解释的病例的发现。图像库用于补充检查表,以提高清晰度和培训目的。然后,检查表的输入用于通过逻辑回归预测模型计算恶性的可能性。生成标准化的报告文本,总结相关的阳性和阴性发现。该计算机辅助诊断系统展示了诊断决策支持可以帮助放射科医生的三个领域的整合:首先,通过特征检查表和说明性图像库来辅助图像解读;其次,通过基于特征的预测建模;最后,通过结构化报告。我们提出了一种诊断决策支持工具,为放射科医生提供了鉴别良性和恶性 VCF 的循证指导。该模型在其他诊断困难的情况下可能有用,需要进一步的临床测试。