Suppr超能文献

为放射科医生提供数据驱动的决策支持:重新利用国家肺癌筛查试验数据集进行肺结节管理。

Data-driven decision support for radiologists: re-using the National Lung Screening Trial dataset for pulmonary nodule management.

作者信息

Morrison James J, Hostetter Jason, Wang Kenneth, Siegel Eliot L

机构信息

Department of Radiology, University of Maryland, 22 S. Greene St., Baltimore, MD, 21201, USA,

出版信息

J Digit Imaging. 2015 Feb;28(1):18-23. doi: 10.1007/s10278-014-9720-1.

Abstract

Real-time mining of large research trial datasets enables development of case-based clinical decision support tools. Several applicable research datasets exist including the National Lung Screening Trial (NLST), a dataset unparalleled in size and scope for studying population-based lung cancer screening. Using these data, a clinical decision support tool was developed which matches patient demographics and lung nodule characteristics to a cohort of similar patients. The NLST dataset was converted into Structured Query Language (SQL) tables hosted on a web server, and a web-based JavaScript application was developed which performs real-time queries. JavaScript is used for both the server-side and client-side language, allowing for rapid development of a robust client interface and server-side data layer. Real-time data mining of user-specified patient cohorts achieved a rapid return of cohort cancer statistics and lung nodule distribution information. This system demonstrates the potential of individualized real-time data mining using large high-quality clinical trial datasets to drive evidence-based clinical decision-making.

摘要

对大型研究试验数据集进行实时挖掘,有助于开发基于病例的临床决策支持工具。现已有几个适用的研究数据集,包括国家肺癌筛查试验(NLST),该数据集在规模和范围上无与伦比,可用于研究基于人群的肺癌筛查。利用这些数据,开发了一种临床决策支持工具,该工具将患者人口统计学特征和肺结节特征与一组相似患者进行匹配。NLST数据集被转换为托管在网络服务器上的结构化查询语言(SQL)表,并开发了一个基于网络的JavaScript应用程序来执行实时查询。JavaScript用于服务器端和客户端语言,从而能够快速开发强大的客户端界面和服务器端数据层。对用户指定的患者队列进行实时数据挖掘,能够快速返回队列癌症统计数据和肺结节分布信息。该系统展示了利用大型高质量临床试验数据集进行个性化实时数据挖掘以推动循证临床决策的潜力。

相似文献

9
Implementing lung cancer screening: the US experience.实施肺癌筛查:美国的经验
Clin Radiol. 2017 May;72(5):401-406. doi: 10.1016/j.crad.2016.12.003. Epub 2017 Jan 6.

引用本文的文献

3
Large datasets, logistics, sharing and workflow in screening.筛查中的大型数据集、物流、共享及工作流程
Br J Radiol. 2018 Oct;91(1090):20170751. doi: 10.1259/bjr.20170751. Epub 2018 Mar 29.

本文引用的文献

1
Bayesian networks for clinical decision support in lung cancer care.贝叶斯网络在肺癌护理中的临床决策支持。
PLoS One. 2013 Dec 6;8(12):e82349. doi: 10.1371/journal.pone.0082349. eCollection 2013.
7
[Bayes analysis in clinical decision-making for solitary pulmonary nodules].
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009 May;34(5):401-5.
8
The clinical imperative of medical imaging informatics.医学影像信息学的临床必要性。
J Digit Imaging. 2009 Aug;22(4):345-7. doi: 10.1007/s10278-009-9195-7. Epub 2009 May 5.
9
Artificial intelligence in radiology: decision support systems.放射学中的人工智能:决策支持系统
Radiographics. 1994 Jul;14(4):849-61. doi: 10.1148/radiographics.14.4.7938772.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验