Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA.
Biochemistry. 2010 Sep 7;49(35):7694-703. doi: 10.1021/bi1010333.
Here we report the isolation, kinetic characterization, and X-ray structure determination of a cooperative Escherichia coli aspartate transcarbamoylase (ATCase) without regulatory subunits. The native ATCase holoenzyme consists of six catalytic chains organized as two trimers bridged noncovalently by six regulatory chains organized as three dimers, c(6)r(6). Dissociation of the native holoenzyme produces catalytically active trimers, c(3), and nucleotide-binding regulatory dimers, r(2). By introducing specific disulfide bonds linking the catalytic chains from the upper trimer site specifically to their corresponding chains in the lower trimer prior to dissociation, a new catalytic unit, c(6), was isolated consisting of two catalytic trimers linked by disulfide bonds. Not only does the c(6) species display enhanced enzymatic activity compared to the wild-type enzyme, but the disulfide bonds also impart homotropic cooperativity, never observed in the wild-type c(3). The c(6) ATCase was crystallized in the presence of phosphate and its X-ray structure determined to 2.10 A resolution. The structure of c(6) ATCase liganded with phosphate exists in a nearly identical conformation as other R-state structures with similar values calculated for the vertical separation and planar angles. The disulfide bonds linking upper and lower catalytic trimers predispose the active site into a more active conformation by locking the 240s loop into the position characteristic of the high-affinity R state. Furthermore, the elimination of the structural constraints imposed by the regulatory subunits within the holoenzyme provides increased flexibility to the c(6) enzyme, enhancing its activity over the wild-type holoenzyme (c(6)r(6)) and c(3). The covalent linkage between upper and lower catalytic trimers restores homotropic cooperativity so that a binding event at one or so active sites stimulates binding at the other sites. Reduction of the disulfide bonds in the c(6) ATCase results in c(3) catalytic subunits that display kinetic parameters similar to those of wild-type c(3). This is the first report of an active c(6) catalytic unit that displays enhanced activity and homotropic cooperativity.
我们在此报告了一种无调节亚基的协同性大肠杆菌天冬氨酸转氨甲酰酶(ATCase)的分离、动力学特征分析和 X 射线结构测定。天然的 ATCase 全酶由六个催化链组成,这些催化链组织成两个三聚体,通过六个调节链组织成三个二聚体(c(6)r(6))非共价桥接。天然全酶的解离产生具有催化活性的三聚体 c(3)和核苷酸结合调节二聚体 r(2)。通过在解离前引入特定的二硫键,将来自上三聚体部位的催化链特异性地连接到下三聚体的相应链上,从而分离出一种新的催化单元 c(6),它由两个通过二硫键连接的催化三聚体组成。c(6) 物种不仅显示出比野生型酶更高的酶活性,而且二硫键还赋予同型协同性,这在野生型 c(3)中从未观察到过。c(6) ATCase 在磷酸盐存在下结晶,并确定其 X 射线结构分辨率为 2.10 A。c(6)ATCase 与磷酸盐结合的结构存在于与其他 R 态结构几乎相同的构象中,并且垂直分离和平面角度的计算值相似。连接上、下催化三聚体的二硫键通过将 240s 环锁定在高亲和力 R 态特征的位置,使活性位点预先处于更活跃的构象。此外,消除全酶中调节亚基施加的结构约束为 c(6)酶提供了更大的灵活性,使其活性超过野生型全酶(c(6)r(6))和 c(3)。上、下催化三聚体之间的共价连接恢复了同型协同性,使得一个或多个活性位点的结合事件刺激其他位点的结合。c(6)ATCase 中二硫键的还原导致 c(3)催化亚基显示出与野生型 c(3)相似的动力学参数。这是首次报道具有增强活性和同型协同性的活性 c(6)催化单元。