Suppr超能文献

采用基于 I 型胶原的体系来了解细胞-支架相互作用,并递送嵌合胶原结合生长因子用于血管组织工程。

Using a type 1 collagen-based system to understand cell-scaffold interactions and to deliver chimeric collagen-binding growth factors for vascular tissue engineering.

机构信息

Department of Surgery, Loyola University Medical Center, Maywood, IL 60153, USA.

出版信息

J Investig Med. 2010 Oct;58(7):845-8. doi: 10.231/JIM.0b013e3181ee81f7.

Abstract

Vascular tissue engineering should provide more biocompatible and functional conduits than synthetic vascular grafts. Understanding cell-scaffold interactions and developing an efficient delivery system for growth factors and other biomolecules to control the signaling between the cells and the scaffold are fundamental issues in a wide range of tissue engineering research fields. Type 1 collagen is a natural scaffold extensively used in vascular tissue engineering and is a widely used vehicle in biomolecule delivery. In this article, we will discuss type 1 collagen as a vascular tissue engineering scaffold, describe strategies for elucidating the interaction between cells and type 1 collagen scaffolds using various imaging techniques, and summarize our work on the development of a chimeric collagen-binding growth factor-based local delivery system.

摘要

血管组织工程应该提供比合成血管移植物更具生物相容性和功能性的导管。了解细胞-支架相互作用,并开发有效的生长因子和其他生物分子的传递系统,以控制细胞与支架之间的信号传递,这是广泛的组织工程研究领域中的基本问题。I 型胶原是一种广泛用于血管组织工程的天然支架,也是生物分子传递的常用载体。在本文中,我们将讨论 I 型胶原作为血管组织工程支架,描述使用各种成像技术阐明细胞与 I 型胶原支架相互作用的策略,并总结我们在开发基于嵌合胶原结合生长因子的局部传递系统方面的工作。

相似文献

2
[Application of collagen composite scaffold in vascular tissue engineering].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011 Jul;25(7):859-62.
3
Matrices and scaffolds for drug delivery in vascular tissue engineering.
Adv Drug Deliv Rev. 2007 May 30;59(4-5):360-73. doi: 10.1016/j.addr.2007.03.018. Epub 2007 Apr 18.
6
7
Membrane-based cultures generate scaffold-free neocartilage in vitro: influence of growth factors.
Tissue Eng Part A. 2010 Feb;16(2):513-21. doi: 10.1089/ten.TEA.2009.0326.
8
Growth factor-eluting technologies for bone tissue engineering.
Drug Deliv Transl Res. 2016 Apr;6(2):184-94. doi: 10.1007/s13346-015-0233-3.
9
Evaluation of an elastic decellularized tendon-derived scaffold for the vascular tissue engineering application.
J Biomed Mater Res A. 2019 Jun;107(6):1225-1234. doi: 10.1002/jbm.a.36622. Epub 2019 Feb 18.

引用本文的文献

2
Angiogenic Potential in Biological Hydrogels.
Biomedicines. 2020 Oct 20;8(10):436. doi: 10.3390/biomedicines8100436.
3
Recent advances in biomaterials for 3D scaffolds: A review.
Bioact Mater. 2019 Oct 25;4:271-292. doi: 10.1016/j.bioactmat.2019.10.005. eCollection 2019 Dec.
4
Bioactive polymeric scaffolds for tissue engineering.
Bioact Mater. 2016 Dec;1(2):93-108. doi: 10.1016/j.bioactmat.2016.11.001. Epub 2016 Dec 20.
5
Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds.
Adv Healthc Mater. 2016 Jul;5(13):1656-66. doi: 10.1002/adhm.201600136. Epub 2016 May 24.
6
Advancing biomaterials of human origin for tissue engineering.
Prog Polym Sci. 2016 Feb 1;53:86-168. doi: 10.1016/j.progpolymsci.2015.02.004. Epub 2015 Mar 28.
7
Surface modification of PVDF using non-mammalian sources of collagen for enhancement of endothelial cell functionality.
J Mater Sci Mater Med. 2016 Mar;27(3):45. doi: 10.1007/s10856-015-5651-8. Epub 2016 Jan 12.
8
"Ins" and "Outs" of mesenchymal stem cell osteogenesis in regenerative medicine.
World J Stem Cells. 2014 Apr 26;6(2):94-110. doi: 10.4252/wjsc.v6.i2.94.
9
Self-organizing tissue-engineered constructs in collagen hydrogels.
Microsc Microanal. 2012 Feb;18(1):99-106. doi: 10.1017/S1431927611012372. Epub 2012 Jan 4.

本文引用的文献

1
Heart disease and stroke statistics--2010 update: a report from the American Heart Association.
Circulation. 2010 Feb 23;121(7):e46-e215. doi: 10.1161/CIRCULATIONAHA.109.192667. Epub 2009 Dec 17.
2
Local delivery of a collagen-binding FGF-1 chimera to smooth muscle cells in collagen scaffolds for vascular tissue engineering.
Biomaterials. 2010 Feb;31(5):878-85. doi: 10.1016/j.biomaterials.2009.10.007. Epub 2009 Oct 23.
3
Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering.
Biomaterials. 2009 Dec;30(36):6844-53. doi: 10.1016/j.biomaterials.2009.08.058. Epub 2009 Sep 26.
4
The temporal and spatial dynamics of microscale collagen scaffold remodeling by smooth muscle cells.
Biomaterials. 2009 Apr;30(11):2023-31. doi: 10.1016/j.biomaterials.2008.12.064. Epub 2009 Jan 15.
5
Biologically active chitosan systems for tissue engineering and regenerative medicine.
Curr Top Med Chem. 2008;8(4):354-64. doi: 10.2174/156802608783790974.
6
Review: advances in vascular tissue engineering using protein-based biomaterials.
Tissue Eng. 2007 Nov;13(11):2601-13. doi: 10.1089/ten.2007.0196.
7
Construction and characterization of a thrombin-resistant designer FGF-based collagen binding domain angiogen.
Biomaterials. 2008 Jan;29(3):327-36. doi: 10.1016/j.biomaterials.2007.09.034. Epub 2007 Oct 22.
9
A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering.
Biomaterials. 2004 Feb;25(5):887-94. doi: 10.1016/j.biomaterials.2003.07.002.
10
Advances in vascular tissue engineering.
Cardiovasc Pathol. 2003 Sep-Oct;12(5):271-6. doi: 10.1016/s1054-8807(03)00086-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验