Suppr超能文献

预测大鼠尾加压素 II 受体的三维结构,并通过原子模拟比较人源和大鼠受体的拮抗剂结合位点和结合选择性。

Prediction of the three-dimensional structure for the rat urotensin II receptor, and comparison of the antagonist binding sites and binding selectivity between human and rat receptors from atomistic simulations.

机构信息

Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

ChemMedChem. 2010 Sep 3;5(9):1594-608. doi: 10.1002/cmdc.201000175.

Abstract

Urotensin-II (U-II) has been shown to be the most potent mammalian vasoconstrictor known. Thus, a U-II antagonist might be of therapeutic value in a number of cardiovascular disorders. However, interspecies variability of several nonpeptidic ligands complicates the interpretation of in vivo studies of such antagonists in preclinical animal disease models. ACT058362 is a selective antagonist for the human U-II receptor (hUT2R) with a reported K(d) value of approximately 4 nM in a molecular binding assay, but it is reported to bind weakly to rat UT2R (rUT2R), with a K(d) value of approximately 1 500 nM. In contrast, the arylsulphonamide SB706375 is a selective antagonist against both hUT2R (K(d)= approximately 9 nM) and rUT2R (K(d)= approximately 21 nM). To understand the species selectivity of the UT2R, we investigated the binding site of ACT058362 and SB706375 in both hUT2R and rUT2R to explain the dramatically lower (approximately 400-fold) affinity of ACT058362 for rUT2R and the similar affinity (approximately 10 nM) of SB706375 for both UT2Rs. These studies used MembStruk and MSCDock to predict the UT2R structure and the binding site of ACT058362 and SB706375. Based on binding energies, we found two binding modes each with D130(3.32) as the crucial anchoring point (Ballesteros-Weinstein numbering given in superscript). We predict that ACT058362 (an aryl-amine-aryl or ANA ligand) binds in the transmembrane (TM) 3456 region, while SB706375 (an aryl-aryl-amine or AAN ligand) binds in the TM 1237 region. These predicted sites explain the known differences in binding of the ANA ligand to rat and human receptors, while explaining the similar binding of the AAN compound to rat and human receptors. Moreover the predictions explain currently available structure-activity relationship (SAR) data. To further validate the predicted binding sites of these ligands in hUT2R and rUT2R, we propose several mutations that would help define the structural origins of differential responses between UT2R of different species, potentially indicating novel UT2R antagonists with cross-species high affinity.

摘要

尿鸟素 II(U-II)已被证明是已知最有效的哺乳动物血管收缩剂。因此,U-II 拮抗剂在许多心血管疾病中可能具有治疗价值。然而,几种非肽类配体的种间变异性使这些拮抗剂在临床前动物疾病模型中的体内研究的解释复杂化。ACT058362 是一种选择性的人 U-II 受体(hUT2R)拮抗剂,在分子结合测定中报告的 K(d)值约为 4 nM,但据报道其与大鼠 UT2R(rUT2R)的结合较弱,K(d)值约为 1500 nM。相比之下,芳基磺酰胺 SB706375 是 hUT2R(K(d)=约 9 nM)和 rUT2R(K(d)=约 21 nM)的选择性拮抗剂。为了了解 UT2R 的种属选择性,我们研究了 ACT058362 和 SB706375 在 hUT2R 和 rUT2R 中的结合位点,以解释 ACT058362 对 rUT2R 的亲和力降低约 400 倍(约 400 倍),以及 SB706375 对两种 UT2R 的亲和力相似(约 10 nM)。这些研究使用 MembStruk 和 MSCDock 来预测 UT2R 的结构和 ACT058362 和 SB706375 的结合位点。基于结合能,我们发现每种配体都有两种结合模式,其中 D130(3.32)作为关键的锚定点(超脚本中的 Ballesteros-Weinstein 编号)。我们预测 ACT058362(芳基-胺-芳基或 ANA 配体)结合在跨膜(TM)3456 区域,而 SB706375(芳基-芳基-胺或 AAN 配体)结合在 TM 1237 区域。这些预测的位点解释了已知的 ANA 配体与大鼠和人类受体结合的差异,同时解释了 AAN 化合物与大鼠和人类受体结合的相似性。此外,这些预测还解释了当前可用的结构-活性关系(SAR)数据。为了进一步验证这些配体在 hUT2R 和 rUT2R 中的预测结合位点,我们提出了几种突变,这将有助于确定不同物种 UT2R 之间差异反应的结构起源,可能表明具有交叉物种高亲和力的新型 UT2R 拮抗剂。

相似文献

2
Predicted ligands for the human urotensin-II G protein-coupled receptor with some experimental validation.
ChemMedChem. 2014 Aug;9(8):1732-43. doi: 10.1002/cmdc.201402087. Epub 2014 Jul 2.
7
Synthesis and SAR of thieno[3,2-b]pyridinyl urea derivatives as urotensin-II receptor antagonists.
Bioorg Med Chem Lett. 2014 Dec 15;24(24):5832-5835. doi: 10.1016/j.bmcl.2014.09.089. Epub 2014 Oct 28.

引用本文的文献

1
Predicted 3D structures of olfactory receptors with details of odorant binding to OR1G1.
J Comput Aided Mol Des. 2014 Dec;28(12):1175-90. doi: 10.1007/s10822-014-9793-4. Epub 2014 Sep 16.
2
Selectivity and activation of dopamine D3R from molecular dynamics.
J Mol Model. 2012 Dec;18(12):5051-63. doi: 10.1007/s00894-012-1509-x. Epub 2012 Jul 3.
3
Characterizing and predicting the functional and conformational diversity of seven-transmembrane proteins.
Methods. 2011 Dec;55(4):405-14. doi: 10.1016/j.ymeth.2011.12.005. Epub 2011 Dec 17.
4
Elucidating glycosaminoglycan-protein-protein interactions using carbohydrate microarray and computational approaches.
Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9747-52. doi: 10.1073/pnas.1102962108. Epub 2011 May 31.
5
Predicted structures of agonist and antagonist bound complexes of adenosine A3 receptor.
Proteins. 2011 Jun;79(6):1878-97. doi: 10.1002/prot.23012. Epub 2011 Apr 12.

本文引用的文献

1
Flat-Bottom Strategy for Improved Accuracy in Protein Side-Chain Placements.
J Chem Theory Comput. 2008 Dec 9;4(12):2160-9. doi: 10.1021/ct800196k.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
The structure of human serotonin 2c G-protein-coupled receptor bound to agonists and antagonists.
J Mol Graph Model. 2008 Aug;27(1):66-81. doi: 10.1016/j.jmgm.2008.02.006. Epub 2008 Mar 27.
4
Prediction of the 3-D structure of rat MrgA G protein-coupled receptor and identification of its binding site.
J Mol Graph Model. 2007 Nov;26(4):800-12. doi: 10.1016/j.jmgm.2007.07.003. Epub 2007 Jul 14.
5
Prediction of the 3D structure and dynamics of human DP G-protein coupled receptor bound to an agonist and an antagonist.
J Am Chem Soc. 2007 Sep 5;129(35):10720-31. doi: 10.1021/ja070865d. Epub 2007 Aug 11.
8
Predictions of CCR1 chemokine receptor structure and BX 471 antagonist binding followed by experimental validation.
J Biol Chem. 2006 Sep 15;281(37):27613-20. doi: 10.1074/jbc.M601389200. Epub 2006 Jul 12.
10
Dynamic behavior of fully solvated beta2-adrenergic receptor, embedded in the membrane with bound agonist or antagonist.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4882-7. doi: 10.1073/pnas.0511329103. Epub 2006 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验