Li Youyong, Zhu Fangqiang, Vaidehi Nagarajan, Goddard William A, Sheinerman Felix, Reiling Stephan, Morize Isabelle, Mu Lan, Harris Keith, Ardati Ali, Laoui Abdelazize
Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, USA.
J Am Chem Soc. 2007 Sep 5;129(35):10720-31. doi: 10.1021/ja070865d. Epub 2007 Aug 11.
Prostanoids play important physiological roles in the cardiovascular and immune systems and in pain sensation in peripheral systems through their interactions with eight G-protein coupled receptors. These receptors are important drug targets, but development of subtype specific agonists and antagonists has been hampered by the lack of 3D structures for these receptors. We report here the 3D structure for the human DP G-protein coupled receptor (GPCR) predicted by the MembStruk computational method. To validate this structure, we use the HierDock computational method to predict the binding mode for the endogenous agonist (PGD2) to DP. Based on our structure, we predicted the binding of different antagonists and optimized them. We find that PGD2 binds vertically to DP in the TM1237 region with the alpha chain toward the extracellular (EC) region and the omega chain toward the middle of the membrane. This structure explains the selectivity of the DP receptor and the residues involved in the predicted binding site correlate very well with available mutation experiments on DP, IP, TP, FP, and EP subtypes. We report molecular dynamics of DP in explicit lipid and water and find that the binding of the PGD2 agonist leads to correlated rotations of helices of TM3 and TM7, whereas binding of antagonist leads to no such rotations. Thus, these motions may be related to the mechanism of activation.
前列腺素通过与八种G蛋白偶联受体相互作用,在心血管系统、免疫系统以及外周系统的痛觉感受中发挥重要的生理作用。这些受体是重要的药物靶点,但由于缺乏这些受体的三维结构,亚型特异性激动剂和拮抗剂的开发受到了阻碍。我们在此报告通过MembStruk计算方法预测的人DP G蛋白偶联受体(GPCR)的三维结构。为了验证该结构,我们使用HierDock计算方法预测内源性激动剂(PGD2)与DP的结合模式。基于我们的结构,我们预测了不同拮抗剂的结合并对其进行了优化。我们发现PGD2在TM1237区域垂直结合到DP,α链朝向细胞外(EC)区域,ω链朝向膜中部。该结构解释了DP受体的选择性,并且预测结合位点中涉及的残基与DP、IP、TP、FP和EP亚型的现有突变实验非常吻合。我们报告了DP在明确的脂质和水中的分子动力学,发现PGD2激动剂的结合导致TM3和TM7螺旋的相关旋转,而拮抗剂的结合则不会导致这种旋转。因此,这些运动可能与激活机制有关。