Heo Jiyoung, Han Sang-Kyou, Vaidehi Nagarajan, Wendel John, Kekenes-Huskey Peter, Goddard William A
Materials and Process Simulations Center (139-74), Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Chembiochem. 2007 Sep 3;8(13):1527-39. doi: 10.1002/cbic.200700188.
We report the 3D structure predicted for the mouse MrgC11 (mMrgC11) receptor by using the MembStruk computational protocol, and the predicted binding site for the F-M-R-F-NH(2) neuropeptide together with four singly chirally modified ligands. We predicted that the R-F-NH(2) part of the tetrapeptide sticks down into the protein between the transmembrane (TM) domains 3, 4, 5, and 6. The Phe (F-NH(2)) interacted favorably with Tyr110 (TM3), while the Arg makes salt bridges to Asp161 (TM4) and Asp179 (TM5). We predicted that the Met extends from the binding site, but the terminal Phe residue sticks back into an aromatic/hydrophobic site flanked by Tyr237, Leu238, Leu240, and Tyr256 (TM6), and Trp162 (TM4). We carried out subsequent mutagenesis experiments followed by intracellular calcium-release assays that demonstrated the dramatic decrease in activity for the Tyr110Ala, Asp161Ala, and Asp179Ala substitutions, which was predicted by our model. These experiments provide strong evidence that our predicted G protein-coupled receptor (GPCR) structure is sufficiently accurate to identify binding sites for selective ligands. Similar studies were made with the mMrgA1 receptor, which did not bind the R-F-NH(2) dipeptide; we explain this to be due to the increased hydrophobic character of the binding pocket in mMrgA1.
我们报告了通过使用MembStruk计算协议预测的小鼠MrgC11(mMrgC11)受体的三维结构,以及F-M-R-F-NH₂神经肽与四种单一对映体修饰配体的预测结合位点。我们预测四肽的R-F-NH₂部分向下延伸到跨膜(TM)结构域3、4、5和6之间的蛋白质中。苯丙氨酸(F-NH₂)与酪氨酸110(TM3)发生有利相互作用,而精氨酸与天冬氨酸161(TM4)和天冬氨酸179(TM5)形成盐桥。我们预测甲硫氨酸从结合位点延伸出来,但末端苯丙氨酸残基又回到由酪氨酸237、亮氨酸238、亮氨酸240和酪氨酸256(TM6)以及色氨酸162(TM4)构成的芳香/疏水位点。我们随后进行了诱变实验,接着进行细胞内钙释放测定,结果表明酪氨酸110丙氨酸、天冬氨酸161丙氨酸和天冬氨酸179丙氨酸替代导致活性显著下降,这与我们的模型预测一致。这些实验提供了强有力的证据,证明我们预测的G蛋白偶联受体(GPCR)结构足够准确,能够识别选择性配体的结合位点。对不结合R-F-NH₂二肽的mMrgA1受体也进行了类似研究;我们将此解释为mMrgA1结合口袋的疏水特性增强所致。