Suppr超能文献

关于Barn Owl(Tyto alba)的核层状体内细胞外场电位的起源。

On the origin of the extracellular field potential in the nucleus laminaris of the barn owl (Tyto alba).

机构信息

Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

J Neurophysiol. 2010 Oct;104(4):2274-90. doi: 10.1152/jn.00395.2010. Epub 2010 Aug 4.

Abstract

The neurophonic is a sound-evoked, frequency-following potential that can be recorded extracellularly in nucleus laminaris of the barn owl. The origin of the neurophonic, and thus the mechanisms that give rise to its exceptional temporal precision, has not yet been identified. Putative generators of the neurophonic are the activity of afferent axons, synaptic activation of laminaris neurons, or action potentials in laminaris neurons. To identify the generators, we analyzed the neurophonic in the high-frequency (>2.5 kHz) region of nucleus laminaris in response to monaural pure-tone stimulation. The amplitude of the neurophonic is typically in the millivolt range. The signal-to-noise ratio reaches values beyond 30 dB. To assess which generators could give rise to these large, synchronous extracellular potentials, we developed a computational model. Spike trains were produced by an inhomogeneous Poisson process and convolved with a spike waveform. The model explained the dependence of the simulated neurophonic on parameters such as the mean rate, the vector strength of phase locking, the number of statistically independent sources, and why the signal-to-noise ratio is independent of the spike waveform and subsequent filtering of the signal. We found that several hundred sources are needed to reach the observed signal-to-noise ratio. The summed coherent signal from the densely packed afferent axons and activation of their synapses on laminaris neurons are alone sufficient to explain the measured properties of the neurophonic.

摘要

神经声是一种声音诱发的、跟随频率的电位,可以在仓鸮的核层状结构中进行细胞外记录。神经声的起源,以及产生其异常时间精度的机制,尚未确定。神经声的假定发生器是传入轴突的活动、层状神经元的突触激活或层状神经元的动作电位。为了确定发生器,我们分析了单耳纯音刺激引起的核层状结构高频(>2.5 kHz)区域的神经声。神经声的幅度通常在毫伏范围内。信号噪声比达到 30 dB 以上。为了评估哪些发生器可能产生这些大的、同步的细胞外电位,我们开发了一个计算模型。尖峰序列由非均匀泊松过程产生,并与尖峰波形卷积。该模型解释了模拟神经声对参数的依赖性,例如平均率、相位锁定的向量强度、统计独立源的数量,以及为什么信号噪声比与尖峰波形无关,并且信号随后的滤波也无关。我们发现,需要数百个源才能达到观察到的信号噪声比。来自密集排列的传入轴突的总和相干信号及其在层状神经元上的突触激活本身就足以解释所测量的神经声的特性。

相似文献

1
On the origin of the extracellular field potential in the nucleus laminaris of the barn owl (Tyto alba).
J Neurophysiol. 2010 Oct;104(4):2274-90. doi: 10.1152/jn.00395.2010. Epub 2010 Aug 4.
2
Contribution of action potentials to the extracellular field potential in the nucleus laminaris of barn owl.
J Neurophysiol. 2018 Apr 1;119(4):1422-1436. doi: 10.1152/jn.00175.2017. Epub 2017 Dec 20.
3
Linear summation in the barn owl's brainstem underlies responses to interaural time differences.
J Neurophysiol. 2013 Jul;110(1):117-30. doi: 10.1152/jn.00410.2012. Epub 2013 Apr 3.
4
Microsecond precision of phase delay in the auditory system of the barn owl.
J Neurophysiol. 2005 Aug;94(2):1655-8. doi: 10.1152/jn.01226.2004. Epub 2005 Apr 20.
5
A circuit for detection of interaural time differences in the brain stem of the barn owl.
J Neurosci. 1990 Oct;10(10):3227-46. doi: 10.1523/JNEUROSCI.10-10-03227.1990.
6
Auditory responses in the barn owl's nucleus laminaris to clicks: impulse response and signal analysis of neurophonic potential.
J Neurophysiol. 2009 Aug;102(2):1227-40. doi: 10.1152/jn.00092.2009. Epub 2009 Jun 17.
7
Maps of ITD in the nucleus laminaris of the barn owl.
Adv Exp Med Biol. 2013;787:215-22. doi: 10.1007/978-1-4614-1590-9_24.
8
Oscillatory dipoles as a source of phase shifts in field potentials in the mammalian auditory brainstem.
J Neurosci. 2010 Oct 6;30(40):13472-87. doi: 10.1523/JNEUROSCI.0294-10.2010.
9
Neural map of interaural phase difference in the owl's brainstem.
Proc Natl Acad Sci U S A. 1986 Nov;83(21):8400-4. doi: 10.1073/pnas.83.21.8400.
10
Preservation of spectrotemporal tuning between the nucleus laminaris and the inferior colliculus of the barn owl.
J Neurophysiol. 2007 May;97(5):3544-53. doi: 10.1152/jn.01162.2006. Epub 2007 Feb 21.

引用本文的文献

1
Single Neuron Contributions to the Auditory Brainstem EEG.
J Neurosci. 2025 May 28;45(22):e1139242025. doi: 10.1523/JNEUROSCI.1139-24.2025.
2
Single neuron contributions to the auditory brainstem EEG.
bioRxiv. 2025 Mar 21:2024.05.29.596509. doi: 10.1101/2024.05.29.596509.
3
Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl.
J Neurosci. 2024 Jan 3;44(1):e0940232023. doi: 10.1523/JNEUROSCI.0940-23.2023.
4
Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs.
J Neurosci. 2019 May 15;39(20):3882-3896. doi: 10.1523/JNEUROSCI.2989-18.2019. Epub 2019 Mar 18.
5
Dynamics of synaptic extracellular field potentials in the nucleus laminaris of the barn owl.
J Neurophysiol. 2019 Mar 1;121(3):1034-1047. doi: 10.1152/jn.00648.2017. Epub 2018 Dec 21.
6
Contribution of action potentials to the extracellular field potential in the nucleus laminaris of barn owl.
J Neurophysiol. 2018 Apr 1;119(4):1422-1436. doi: 10.1152/jn.00175.2017. Epub 2017 Dec 20.
7
Signatures of Somatic Inhibition and Dendritic Excitation in Auditory Brainstem Field Potentials.
J Neurosci. 2017 Oct 25;37(43):10451-10467. doi: 10.1523/JNEUROSCI.0600-17.2017. Epub 2017 Sep 25.
8
Dipolar extracellular potentials generated by axonal projections.
Elife. 2017 Sep 5;6:e26106. doi: 10.7554/eLife.26106.
9
The Binaural Interaction Component in Barn Owl (Tyto alba) Presents few Differences to Mammalian Data.
J Assoc Res Otolaryngol. 2016 Dec;17(6):577-589. doi: 10.1007/s10162-016-0583-7. Epub 2016 Aug 25.
10
Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
Front Neural Circuits. 2015 Aug 20;9:43. doi: 10.3389/fncir.2015.00043. eCollection 2015.

本文引用的文献

1
A study of nerve physiology.
Stud Rockefeller Inst Med Res Repr. 1947;132:1-548.
2
Do electrode properties create a problem in interpreting local field potential recordings?
J Neurophysiol. 2010 May;103(5):2315-7. doi: 10.1152/jn.00157.2010. Epub 2010 Mar 10.
4
Auditory responses in the barn owl's nucleus laminaris to clicks: impulse response and signal analysis of neurophonic potential.
J Neurophysiol. 2009 Aug;102(2):1227-40. doi: 10.1152/jn.00092.2009. Epub 2009 Jun 17.
5
Broadband coding with dynamic synapses.
J Neurosci. 2009 Feb 18;29(7):2076-88. doi: 10.1523/JNEUROSCI.3702-08.2009.
6
Local origin of field potentials in visual cortex.
Neuron. 2009 Jan 15;61(1):35-41. doi: 10.1016/j.neuron.2008.11.016.
7
Maps of interaural time difference in the chicken's brainstem nucleus laminaris.
Biol Cybern. 2008 Jun;98(6):541-59. doi: 10.1007/s00422-008-0220-6. Epub 2008 May 20.
8
9
In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation.
Neuron. 2007 Sep 6;55(5):809-23. doi: 10.1016/j.neuron.2007.07.027.
10
Axonal site of spike initiation enhances auditory coincidence detection.
Nature. 2006 Dec 21;444(7122):1069-72. doi: 10.1038/nature05347. Epub 2006 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验