Kuokkanen Paula T, Ashida Go, Kraemer Anna, McColgan Thomas, Funabiki Kazuo, Wagner Hermann, Köppl Christine, Carr Catherine E, Kempter Richard
Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
Department of Biology, University of Maryland , College Park, Maryland.
J Neurophysiol. 2018 Apr 1;119(4):1422-1436. doi: 10.1152/jn.00175.2017. Epub 2017 Dec 20.
Extracellular field potentials (EFP) are widely used to evaluate in vivo neural activity, but identification of multiple sources and their relative contributions is often ambiguous, making the interpretation of the EFP difficult. We have therefore analyzed a model EFP from a simple brainstem circuit with separable pre- and postsynaptic components to determine whether we could isolate its sources. Our previous papers had shown that the barn owl neurophonic largely originates with spikes from input axons and synapses that terminate on the neurons in the nucleus laminaris (NL) (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010; Kuokkanen PT, Ashida G, Carr CE, Wagner H, Kempter R. J Neurophysiol 110: 117-130, 2013; McColgan T, Liu J, Kuokkanen PT, Carr CE, Wagner H, Kempter R. eLife 6: e26106, 2017). To determine how much the postsynaptic NL neurons contributed to the neurophonic, we recorded EFP responses in NL in vivo. Power spectral analyses showed that a small spectral component of the evoked response, between 200 and 700 Hz, could be attributed to the NL neurons' spikes, while nucleus magnocellularis (NM) spikes dominate the EFP at frequencies ≳1 kHz. Thus, spikes of NL neurons and NM axons contribute to the EFP in NL in distinct frequency bands. We conclude that if the spectral components of source types are different and if their activities can be selectively modulated, the identification of EFP sources is possible. NEW & NOTEWORTHY Extracellular field potentials (EFPs) generate clinically important signals, but their sources are incompletely understood. As a model, we have analyzed the auditory neurophonic in the barn owl's nucleus laminaris. There the EFP originates predominantly from spiking in the afferent axons, with spectral power ≳1 kHz, while postsynaptic laminaris neurons contribute little. In conclusion, the identification of EFP sources is possible if they have different spectral components and if their activities can be modulated selectively.
细胞外场电位(EFP)被广泛用于评估体内神经活动,但多个来源及其相对贡献的识别往往不明确,这使得对EFP的解释变得困难。因此,我们分析了一个来自简单脑干回路的模型EFP,该回路具有可分离的突触前和突触后成分,以确定我们是否能够分离其来源。我们之前的论文表明,仓鸮的神经音主要起源于终止于层状核(NL)中神经元的输入轴突和突触的尖峰(Kuokkanen PT,Wagner H,Ashida G,Carr CE,Kempter R。《神经生理学杂志》104:2274 - 2290,2010;Kuokkanen PT,Ashida G,Carr CE,Wagner H,Kempter R。《神经生理学杂志》110:117 - 130,2013;McColgan T,Liu J,Kuokkanen PT,Carr CE,Wagner H,Kempter R。《eLife》6:e26106,2017)。为了确定突触后NL神经元对神经音的贡献程度,我们在体内记录了NL中的EFP反应。功率谱分析表明,诱发反应在200至700赫兹之间的一个小频谱成分可归因于NL神经元的尖峰,而大细胞性核(NM)尖峰在频率≳1千赫兹时主导EFP。因此,NL神经元和NM轴突的尖峰在不同频段对NL中的EFP有贡献。我们得出结论,如果源类型的频谱成分不同,并且如果它们的活动可以被选择性调制,那么识别EFP来源是可能的。新内容与值得注意之处 细胞外场电位(EFPs)产生临床上重要信号,但其来源尚未完全了解。作为一个模型,我们分析了仓鸮层状核中的听觉神经音。在那里,EFP主要起源于传入轴突的尖峰,频谱功率≳1千赫兹,而突触后层状神经元贡献很小。总之,如果EFP来源具有不同的频谱成分并且其活动可以被选择性调制,那么识别它们是可能的。