Gabi Michael, Hefermehl Lukas, Lukic Danijela, Zahn Raphael, Vörös Janos, Eberli Daniel
Laboratory of Biosensors and Bioelectronics, Swiss Federal Institute of Technology, Gloriastrasse 35, 8092, Zürich, Switzerland.
Urol Res. 2011 Apr;39(2):81-8. doi: 10.1007/s00240-010-0284-3. Epub 2010 Aug 5.
Long-term catheters remain a significant clinical problem in urology due to the high rate of bacterial colonization, infection, and encrustation. Minutes after insertion of a catheter, depositions of host urinary components onto the catheter surface form a conditioning film actively supporting the bacterial adhesion process. We investigated the possibility of reducing or avoiding the buildup of these naturally forming conditioning films and of preventing bacterial adhesion by applying different current densities to platinum electrodes as a possible catheter coating material. In this model we employed a defined environment using artificial urine and Proteus mirabilis. The film formation and desorption was analyzed by highly mass sensitive quartz crystal microbalance and surface sensitive atomic force microscopy. Further, we performed bacterial staining to assess adherence, growth, and survival on the electrodes with different current densities. By applying alternating microcurrent densities on platinum electrodes, we could produce a self regenerative surface which actively removed the conditioning film and significantly reduced bacterial adherence, growth, and survival. The results of this study could easily be adapted to a catheter design for clinical use.
由于细菌定植、感染和结壳的发生率较高,长期导管仍然是泌尿外科的一个重大临床问题。导管插入后几分钟,宿主尿液成分在导管表面的沉积形成一层调节膜,积极支持细菌粘附过程。我们研究了通过向作为可能的导管涂层材料的铂电极施加不同电流密度来减少或避免这些自然形成的调节膜的积累以及防止细菌粘附的可能性。在这个模型中,我们使用人工尿液和奇异变形杆菌构建了一个特定的环境。通过高灵敏度的石英晶体微天平以及表面敏感的原子力显微镜对膜的形成和解吸进行了分析。此外,我们进行了细菌染色,以评估不同电流密度下电极上细菌的粘附、生长和存活情况。通过在铂电极上施加交变微电流密度,我们可以产生一个自我再生表面,该表面能主动去除调节膜,并显著减少细菌的粘附、生长和存活。这项研究的结果可以很容易地应用于临床使用的导管设计。