Suppr超能文献

纳米颗粒和生物颗粒沉积动力学:石英微天平测量

Nanoparticle and Bioparticle Deposition Kinetics: Quartz Microbalance Measurements.

作者信息

Bratek-Skicki Anna, Sadowska Marta, Maciejewska-Prończuk Julia, Adamczyk Zbigniew

机构信息

Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2,1050 Brussels, Belgium.

Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.

出版信息

Nanomaterials (Basel). 2021 Jan 8;11(1):145. doi: 10.3390/nano11010145.

Abstract

Controlled deposition of nanoparticles and bioparticles is necessary for their separation and purification by chromatography, filtration, food emulsion and foam stabilization, etc. Compared to numerous experimental techniques used to quantify bioparticle deposition kinetics, the quartz crystal microbalance (QCM) method is advantageous because it enables real time measurements under different transport conditions with high precision. Because of its versatility and the deceptive simplicity of measurements, this technique is used in a plethora of investigations involving nanoparticles, macroions, proteins, viruses, bacteria and cells. However, in contrast to the robustness of the measurements, theoretical interpretations of QCM measurements for a particle-like load is complicated because the primary signals (the oscillation frequency and the band width shifts) depend on the force exerted on the sensor rather than on the particle mass. Therefore, it is postulated that a proper interpretation of the QCM data requires a reliable theoretical framework furnishing reference results for well-defined systems. Providing such results is a primary motivation of this work where the kinetics of particle deposition under diffusion and flow conditions is discussed. Expressions for calculating the deposition rates and the maximum coverage are presented. Theoretical results describing the QCM response to a heterogeneous load are discussed, which enables a quantitative interpretation of experimental data obtained for nanoparticles and bioparticles comprising viruses and protein molecules.

摘要

对于通过色谱法、过滤、食品乳液和泡沫稳定等方法对纳米颗粒和生物颗粒进行分离和纯化而言,控制它们的沉积是必要的。与用于量化生物颗粒沉积动力学的众多实验技术相比,石英晶体微天平(QCM)方法具有优势,因为它能够在不同传输条件下以高精度进行实时测量。由于其多功能性以及测量看似简单,该技术被用于大量涉及纳米颗粒、大离子、蛋白质、病毒、细菌和细胞的研究中。然而,与测量的稳健性形成对比的是,对于颗粒状负载的QCM测量的理论解释很复杂,因为主要信号(振荡频率和带宽偏移)取决于施加在传感器上的力而非颗粒质量。因此,据推测,对QCM数据进行恰当解释需要一个可靠的理论框架,为明确的系统提供参考结果。提供此类结果是本工作的主要动机,本文讨论了扩散和流动条件下颗粒沉积的动力学。给出了计算沉积速率和最大覆盖率的表达式。讨论了描述QCM对非均匀负载响应的理论结果,这使得能够对针对包含病毒和蛋白质分子的纳米颗粒和生物颗粒获得的实验数据进行定量解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0163/7827609/75295745c154/nanomaterials-11-00145-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验