Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
J Biol Chem. 2010 Oct 8;285(41):31462-71. doi: 10.1074/jbc.M110.156067. Epub 2010 Aug 5.
The translocation of DNA helicases on single-stranded DNA and the unwinding of double-stranded DNA are fueled by the hydrolysis of nucleoside triphosphates (NTP). Although most helicases use ATP in these processes, the DNA helicase encoded by gene 4 of bacteriophage T7 uses dTTP most efficiently. To identify the structural requirements of the NTP, we determined the efficiency of DNA unwinding by T7 helicase using a variety of NTPs and their analogs. The 5-methyl group of thymine was critical for the efficient unwinding of DNA, although the presence of a 3'-ribosyl hydroxyl group partially overcame this requirement. The NTP-binding pocket of the protein was examined by randomly substituting amino acids for several amino acid residues (Thr-320, Arg-504, Tyr-535, and Leu-542) that the crystal structure suggests interact with the nucleotide. Although positions 320 and 542 required aliphatic residues of the appropriate size, an aromatic side chain was necessary at position 535 to stabilize NTP for efficient unwinding. A basic side chain of residue 504 was essential to interact with the 4-carbonyl of the thymine base of dTTP. Replacement of this residue with a small aliphatic residue allowed the accommodation of other NTPs, resulting in the preferential use of dATP and the use of dCTP, a nucleotide not normally used. Results from this study suggest that the NTP must be stabilized by specific interactions within the NTP-binding site of the protein to achieve efficient hydrolysis. These interactions dictate NTP specificity.
DNA 解旋酶在单链 DNA 上的迁移和双链 DNA 的解旋由核苷三磷酸 (NTP) 的水解提供动力。虽然大多数解旋酶在这些过程中使用 ATP,但噬菌体 T7 基因 4 编码的 DNA 解旋酶最有效地使用 dTTP。为了确定 NTP 的结构要求,我们使用各种 NTP 及其类似物确定 T7 解旋酶的 DNA 解旋效率。胸腺嘧啶的 5-甲基对于 DNA 的有效解旋至关重要,尽管存在 3'-核糖羟基基团部分克服了这一要求。通过随机取代几个氨基酸残基(Thr-320、Arg-504、Tyr-535 和 Leu-542)来检查蛋白质的 NTP 结合口袋,晶体结构表明这些氨基酸残基与核苷酸相互作用。尽管位置 320 和 542 需要合适大小的脂族残基,但位置 535 需要芳香族侧链才能稳定 NTP 以实现有效的解旋。残基 504 的碱性侧链对于与 dTTP 的胸腺嘧啶碱基的 4-羰基相互作用至关重要。用小脂族残基替换该残基允许容纳其他 NTP,导致优先使用 dATP 和使用通常不使用的 dCTP。这项研究的结果表明,NTP 必须通过蛋白质的 NTP 结合位点内的特定相互作用来稳定,以实现有效的水解。这些相互作用决定了 NTP 的特异性。