Satapathy Ajit K, Crampton Donald J, Beauchamp Benjamin B, Richardson Charles C
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
J Biol Chem. 2009 May 22;284(21):14286-95. doi: 10.1074/jbc.M900557200. Epub 2009 Mar 17.
The multifunctional protein encoded by gene 4 of bacteriophage T7 (gp4) provides both helicase and primase activity at the replication fork. T7 DNA helicase preferentially utilizes dTTP to unwind duplex DNA in vitro but also hydrolyzes other nucleotides, some of which do not support helicase activity. Very little is known regarding the architecture of the nucleotide binding site in determining nucleotide specificity. Crystal structures of the T7 helicase domain with bound dATP or dTTP identified Arg-363 and Arg-504 as potential determinants of the specificity for dATP and dTTP. Arg-363 is in close proximity to the sugar of the bound dATP, whereas Arg-504 makes a hydrogen bridge with the base of bound dTTP. T7 helicase has a serine at position 319, whereas bacterial helicases that use rATP have a threonine in the comparable position. Therefore, in the present study we have examined the role of these residues (Arg-363, Arg-504, and Ser-319) in determining nucleotide specificity. Our results show that Arg-363 is responsible for dATP, dCTP, and dGTP hydrolysis, whereas Arg-504 and Ser-319 confer dTTP specificity. Helicase-R504A hydrolyzes dCTP far better than wild-type helicase, and the hydrolysis of dCTP fuels unwinding of DNA. Substitution of threonine for serine 319 reduces the rate of hydrolysis of dTTP without affecting the rate of dATP hydrolysis. We propose that different nucleotides bind to the nucleotide binding site of T7 helicase by an induced fit mechanism. We also present evidence that T7 helicase uses the energy derived from the hydrolysis of dATP in addition to dTTP for mediating DNA unwinding.
噬菌体T7基因4编码的多功能蛋白(gp4)在复制叉处兼具解旋酶和引发酶活性。T7 DNA解旋酶在体外优先利用dTTP来解开双链DNA,但也会水解其他核苷酸,其中一些核苷酸并不支持解旋酶活性。关于核苷酸结合位点在决定核苷酸特异性方面的结构,人们了解甚少。结合了dATP或dTTP的T7解旋酶结构域的晶体结构确定,Arg-363和Arg-504是dATP和dTTP特异性的潜在决定因素。Arg-363靠近结合的dATP的糖基,而Arg-504与结合的dTTP的碱基形成氢键。T7解旋酶在319位有一个丝氨酸,而使用rATP的细菌解旋酶在相应位置有一个苏氨酸。因此,在本研究中,我们研究了这些残基(Arg-363、Arg-504和Ser-319)在决定核苷酸特异性中的作用。我们的结果表明,Arg-363负责dATP、dCTP和dGTP的水解,而Arg-504和Ser-319赋予dTTP特异性。解旋酶-R504A水解dCTP的能力远优于野生型解旋酶,dCTP的水解为DNA解旋提供能量。将苏氨酸取代丝氨酸319会降低dTTP的水解速率,而不影响dATP的水解速率。我们提出,不同的核苷酸通过诱导契合机制结合到T7解旋酶的核苷酸结合位点。我们还提供证据表明,T7解旋酶除了利用dTTP水解产生的能量外,还利用dATP水解产生的能量来介导DNA解旋。