Suppr超能文献

CENTS:皮质增强型新生儿组织分割。

CENTS: cortical enhanced neonatal tissue segmentation.

机构信息

IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7515, USA.

出版信息

Hum Brain Mapp. 2011 Mar;32(3):382-96. doi: 10.1002/hbm.21023.

Abstract

The acquisition of high-quality magnetic resonance (MR) images of neonatal brains is largely hampered by their characteristically small head size and insufficient tissue contrast. As a result, subsequent image processing and analysis, especially brain tissue segmentation, are often affected. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by augmenting signal-to-noise ratio and spatial resolution without lengthening data acquisition time. In addition, a specialized hybrid atlas-based tissue segmentation algorithm is developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in the to-be-segmented neonatal image with a Hessian filter for generation of a cortical GM confidence map. A neonatal population atlas is then generated by averaging the presegmented images of a population, weighted by their cortical GM similarity with respect to the to-be-segmented image. Finally, the neonatal population atlas is combined with the GM confidence map, and the resulting enhanced tissue probability maps for each tissue form a hybrid atlas is used for atlas-based segmentation. Various experiments are conducted to compare the segmentations of the proposed method with manual segmentation (on both images acquired with a dedicated phased array coil and a conventional volume coil), as well as with the segmentations of two population-atlas-based methods. Results show the proposed method is capable of segmenting the neonatal brain with the best accuracy, and also preserving the most structural details in the cortical regions.

摘要

获取新生儿大脑的高质量磁共振(MR)图像在很大程度上受到其头部尺寸小和组织对比度不足的限制。因此,后续的图像处理和分析,特别是脑组织分割,往往受到影响。为了解决这个问题,使用专用的相控阵新生儿头部线圈来提高 MR 图像质量,在不增加数据采集时间的情况下提高信噪比和空间分辨率。此外,还开发了一种专门的基于混合图谱的组织分割算法,用于描绘获取的新生儿脑 MR 图像中的精细结构。所提出的组织分割方法首先使用 Hessian 滤波器增强待分割新生儿图像中的片状皮质灰质(GM)结构,以生成皮质 GM 置信图。然后通过对人群的预分割图像进行平均来生成新生儿人群图谱,并根据与待分割图像的皮质 GM 相似性对其进行加权。最后,将新生儿人群图谱与 GM 置信图相结合,得到的增强组织概率图为每个组织形式形成混合图谱,用于基于图谱的分割。进行了各种实验来比较所提出的方法与手动分割(专用相控阵线圈和常规容积线圈采集的图像)以及两种基于人群图谱的方法的分割结果。结果表明,所提出的方法能够以最佳的准确性分割新生儿大脑,并保留皮质区域的最多结构细节。

相似文献

1
CENTS: cortical enhanced neonatal tissue segmentation.
Hum Brain Mapp. 2011 Mar;32(3):382-96. doi: 10.1002/hbm.21023.
2
Cortical Enhanced Tissue Segmentation of Neonatal Brain MR Images Acquired by a Dedicated Phased Array Coil.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2009;2009(5204348):39-45. doi: 10.1109/CVPR.2009.5204348.
3
Segmentation of neonatal brain MR images using patch-driven level sets.
Neuroimage. 2014 Jan 1;84:141-58. doi: 10.1016/j.neuroimage.2013.08.008. Epub 2013 Aug 19.
4
Neonatal brain image segmentation in longitudinal MRI studies.
Neuroimage. 2010 Jan 1;49(1):391-400. doi: 10.1016/j.neuroimage.2009.07.066. Epub 2009 Aug 4.
5
Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation.
Neuroimage. 2010 Jun;51(2):684-93. doi: 10.1016/j.neuroimage.2010.02.025. Epub 2010 Feb 17.
6
Automatic segmentation of neonatal images using convex optimization and coupled level sets.
Neuroimage. 2011 Oct 1;58(3):805-17. doi: 10.1016/j.neuroimage.2011.06.064. Epub 2011 Jul 5.
7
Automatic segmentation of eight tissue classes in neonatal brain MRI.
PLoS One. 2013 Dec 17;8(12):e81895. doi: 10.1371/journal.pone.0081895. eCollection 2013.
8
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Pediatr Res. 2008 Feb;63(2):158-63. doi: 10.1203/PDR.0b013e31815ed071.
9
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
10

引用本文的文献

1
Automated 3D Fetal Brain Segmentation Using an Optimized Deep Learning Approach.
AJNR Am J Neuroradiol. 2022 Mar;43(3):448-454. doi: 10.3174/ajnr.A7419. Epub 2022 Feb 17.
2
Computational neuroanatomy of baby brains: A review.
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.
3
Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism.
Hum Brain Mapp. 2018 Jun;39(6):2609-2623. doi: 10.1002/hbm.24027. Epub 2018 Mar 8.
4
Scalable Joint Segmentation and Registration Framework for Infant Brain Images.
Neurocomputing (Amst). 2017 Mar 15;229:54-62. doi: 10.1016/j.neucom.2016.05.107. Epub 2016 Nov 16.
6
Toward the automatic quantification of in utero brain development in 3D structural MRI: A review.
Hum Brain Mapp. 2017 May;38(5):2772-2787. doi: 10.1002/hbm.23536. Epub 2017 Feb 14.
7
Consistent Spatial-Temporal Longitudinal Atlas Construction for Developing Infant Brains.
IEEE Trans Med Imaging. 2016 Dec;35(12):2568-2577. doi: 10.1109/TMI.2016.2587628. Epub 2016 Jul 7.
8
Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation.
Front Neuroinform. 2016 Mar 29;10:12. doi: 10.3389/fninf.2016.00012. eCollection 2016.
9
Segmentation of perivascular spaces in 7T MR image using auto-context model with orientation-normalized features.
Neuroimage. 2016 Jul 1;134:223-235. doi: 10.1016/j.neuroimage.2016.03.076. Epub 2016 Apr 1.
10
Detail-preserving construction of neonatal brain atlases in space-frequency domain.
Hum Brain Mapp. 2016 Jun;37(6):2133-50. doi: 10.1002/hbm.23160. Epub 2016 Mar 14.

本文引用的文献

1
Neonatal brain image segmentation in longitudinal MRI studies.
Neuroimage. 2010 Jan 1;49(1):391-400. doi: 10.1016/j.neuroimage.2009.07.066. Epub 2009 Aug 4.
2
Automatic segmentation of newborn brain MRI.
Neuroimage. 2009 Aug 15;47(2):564-72. doi: 10.1016/j.neuroimage.2009.04.068. Epub 2009 May 3.
3
Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.
Neuroimage. 2009 Jul 1;46(3):726-38. doi: 10.1016/j.neuroimage.2009.02.018. Epub 2009 Feb 23.
4
A structural MRI study of human brain development from birth to 2 years.
J Neurosci. 2008 Nov 19;28(47):12176-82. doi: 10.1523/JNEUROSCI.3479-08.2008.
5
Infant brain probability templates for MRI segmentation and normalization.
Neuroimage. 2008 Dec;43(4):721-30. doi: 10.1016/j.neuroimage.2008.07.060. Epub 2008 Aug 13.
6
Fetal mechanisms in neurodevelopmental disorders.
Pediatr Neurol. 2008 Mar;38(3):163-76. doi: 10.1016/j.pediatrneurol.2007.10.009.
7
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Pediatr Res. 2008 Feb;63(2):158-63. doi: 10.1203/PDR.0b013e31815ed071.
8
Automatic segmentation and reconstruction of the cortex from neonatal MRI.
Neuroimage. 2007 Nov 15;38(3):461-77. doi: 10.1016/j.neuroimage.2007.07.030. Epub 2007 Aug 7.
9
User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability.
Neuroimage. 2006 Jul 1;31(3):1116-28. doi: 10.1016/j.neuroimage.2006.01.015. Epub 2006 Mar 20.
10
Automatic segmentation of MR images of the developing newborn brain.
Med Image Anal. 2005 Oct;9(5):457-66. doi: 10.1016/j.media.2005.05.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验