Suppr超能文献

新生儿脑部磁共振成像的自动分割

Automatic segmentation of newborn brain MRI.

作者信息

Weisenfeld Neil I, Warfield Simon K

机构信息

Department of Cognitive and Neural Systems, Boston University Boston, MA, USA.

出版信息

Neuroimage. 2009 Aug 15;47(2):564-72. doi: 10.1016/j.neuroimage.2009.04.068. Epub 2009 May 3.

Abstract

Quantitative brain tissue segmentation from newborn MRI offers the possibility of improved clinical decision making and diagnosis, new insight into the mechanisms of disease, and new methods for the evaluation of treatment protocols for preterm newborns. Such segmentation is challenging, however, due to the imaging characteristics of the developing brain. Existing techniques for newborn segmentation either achieve automation by ignoring critical distinctions between different tissue types or require extensive expert interaction. Because manual interaction is time consuming and introduces both bias and variability, we have developed a novel automatic segmentation algorithm for brain MRI of newborn infants. The key algorithmic contribution of this work is a new approach for automatically learning patient-specific class-conditional probability density functions. The algorithm achieves performance comparable to expert segmentations while automatically identifying cortical gray matter, subcortical gray matter, cerebrospinal fluid, myelinated white matter and unmyelinated white matter. We compared the performance of our algorithm with a previously published semi-automated algorithm and with expert-drawn images. Our algorithm achieved an accuracy comparable with methods that require undesirable manual interaction.

摘要

从新生儿磁共振成像(MRI)中进行定量脑组织分割,为改善临床决策和诊断、深入了解疾病机制以及评估早产儿治疗方案的新方法提供了可能性。然而,由于发育中大脑的成像特征,这种分割具有挑战性。现有的新生儿分割技术要么通过忽略不同组织类型之间的关键差异来实现自动化,要么需要大量专家交互。由于手动交互既耗时又会引入偏差和变异性,我们开发了一种用于新生儿脑MRI的新型自动分割算法。这项工作的关键算法贡献是一种自动学习患者特定类条件概率密度函数的新方法。该算法在自动识别皮质灰质、皮质下灰质、脑脊液、有髓白质和无髓白质的同时,实现了与专家分割相当的性能。我们将算法的性能与之前发表的半自动算法以及专家绘制的图像进行了比较。我们的算法实现了与需要不良手动交互的方法相当的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/2945911/3364edf02641/nihms114719f1.jpg

相似文献

1
Automatic segmentation of newborn brain MRI.新生儿脑部磁共振成像的自动分割
Neuroimage. 2009 Aug 15;47(2):564-72. doi: 10.1016/j.neuroimage.2009.04.068. Epub 2009 May 3.
4
Automatic cortical segmentation in the developing brain.发育中大脑的自动皮质分割
Inf Process Med Imaging. 2007;20:257-69. doi: 10.1007/978-3-540-73273-0_22.
7
Segmentation of brain MRI in young children.幼儿脑部磁共振成像的分割
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):687-94. doi: 10.1007/11866565_84.
9
Integrated graph cuts for brain MRI segmentation.用于脑部磁共振成像分割的集成图割算法
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):831-8. doi: 10.1007/11866763_102.

引用本文的文献

9
Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge.多站点婴儿脑分割算法:iSeg-2019 挑战赛。
IEEE Trans Med Imaging. 2021 May;40(5):1363-1376. doi: 10.1109/TMI.2021.3055428. Epub 2021 Apr 30.

本文引用的文献

3
Nonlinear anisotropic filtering of MRI data.MRI 数据的非线性各向异性滤波。
IEEE Trans Med Imaging. 1992;11(2):221-32. doi: 10.1109/42.141646.
4
Adaptive segmentation of MRI data.MRI 数据的自适应分割。
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
7
A hierarchical algorithm for MR brain image parcellation.一种用于磁共振脑图像分割的分层算法。
IEEE Trans Med Imaging. 2007 Sep;26(9):1201-12. doi: 10.1109/TMI.2007.901433.
8
Automatic segmentation and reconstruction of the cortex from neonatal MRI.从新生儿磁共振成像中自动分割和重建皮质。
Neuroimage. 2007 Nov 15;38(3):461-77. doi: 10.1016/j.neuroimage.2007.07.030. Epub 2007 Aug 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验