Suppr超能文献

基于优化深度学习方法的全自动胎儿脑 3D 分割。

Automated 3D Fetal Brain Segmentation Using an Optimized Deep Learning Approach.

机构信息

From the Department of Diagnostic Imaging and Radiology (L.Z., J.D.A.-C., Y.W., K.K., A.L., J.Q., C. Lopez, C. Limperopoulos), Developing Brain Institute, Children's National, Washington, DC.

Department of Biomedical Engineering (L.Z., D.W.), Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, China.

出版信息

AJNR Am J Neuroradiol. 2022 Mar;43(3):448-454. doi: 10.3174/ajnr.A7419. Epub 2022 Feb 17.

Abstract

BACKGROUND AND PURPOSE

MR imaging provides critical information about fetal brain growth and development. Currently, morphologic analysis primarily relies on manual segmentation, which is time-intensive and has limited repeatability. This work aimed to develop a deep learning-based automatic fetal brain segmentation method that provides improved accuracy and robustness compared with atlas-based methods.

MATERIALS AND METHODS

A total of 106 fetal MR imaging studies were acquired prospectively from fetuses between 23 and 39 weeks of gestation. We trained a deep learning model on the MR imaging scans of 65 healthy fetuses and compared its performance with a 4D atlas-based segmentation method using the Wilcoxon signed-rank test. The trained model was also evaluated on data from 41 fetuses diagnosed with congenital heart disease.

RESULTS

The proposed method showed high consistency with the manual segmentation, with an average Dice score of 0.897. It also demonstrated significantly improved performance (< .001) based on the Dice score and 95% Hausdorff distance in all brain regions compared with the atlas-based method. The performance of the proposed method was consistent across gestational ages. The segmentations of the brains of fetuses with high-risk congenital heart disease were also highly consistent with the manual segmentation, though the Dice score was 7% lower than that of healthy fetuses.

CONCLUSIONS

The proposed deep learning method provides an efficient and reliable approach for fetal brain segmentation, which outperformed segmentation based on a 4D atlas and has been used in clinical and research settings.

摘要

背景与目的

磁共振成像(MR)为胎儿大脑的生长和发育提供了重要信息。目前,形态学分析主要依赖于手动分割,这种方法既耗时,又重复性有限。本研究旨在开发一种基于深度学习的自动胎儿脑分割方法,与基于图谱的方法相比,该方法具有更高的准确性和更强的稳健性。

材料与方法

前瞻性地采集了 106 例 23 至 39 孕周胎儿的磁共振成像扫描。我们在 65 例健康胎儿的磁共振成像扫描上训练了一个深度学习模型,并使用 Wilcoxon 符号秩检验比较了其与基于 4D 图谱的分割方法的性能。还在 41 例患有先天性心脏病的胎儿的数据上评估了训练好的模型。

结果

所提出的方法与手动分割具有高度一致性,平均 Dice 评分为 0.897。与基于图谱的方法相比,它在所有脑区的 Dice 评分和 95%Hausdorff 距离上均表现出显著改善(<0.001)。该方法的性能在不同的胎龄间保持一致。高危先天性心脏病胎儿的大脑分割与手动分割也高度一致,尽管 Dice 评分比健康胎儿低 7%。

结论

所提出的深度学习方法为胎儿脑分割提供了一种高效可靠的方法,其性能优于基于 4D 图谱的分割方法,并已在临床和研究环境中得到应用。

相似文献

1
Automated 3D Fetal Brain Segmentation Using an Optimized Deep Learning Approach.
AJNR Am J Neuroradiol. 2022 Mar;43(3):448-454. doi: 10.3174/ajnr.A7419. Epub 2022 Feb 17.
2
Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs.
Sensors (Basel). 2023 Jan 6;23(2):655. doi: 10.3390/s23020655.
3
A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI.
IEEE Trans Med Imaging. 2021 Apr;40(4):1123-1133. doi: 10.1109/TMI.2020.3046579. Epub 2021 Apr 1.
4
An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI.
Neuroimage. 2020 Feb 1;206:116324. doi: 10.1016/j.neuroimage.2019.116324. Epub 2019 Nov 6.
6
Logistic Regression-Based Model Is More Efficient Than U-Net Model for Reliable Whole Brain Magnetic Resonance Imaging Segmentation.
Top Magn Reson Imaging. 2022 Jun 1;31(3):31-39. doi: 10.1097/RMR.0000000000000296. Epub 2022 Jun 28.
7
Segmentation of the aorta in systolic phase from 4D flow MRI: multi-atlas vs. deep learning.
MAGMA. 2023 Oct;36(5):687-700. doi: 10.1007/s10334-023-01066-2. Epub 2023 Feb 17.
8
Learning to segment fetal brain tissue from noisy annotations.
Med Image Anal. 2023 Apr;85:102731. doi: 10.1016/j.media.2022.102731. Epub 2023 Jan 2.
9
Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks.
Neuroimage Clin. 2019;24:102061. doi: 10.1016/j.nicl.2019.102061. Epub 2019 Nov 9.
10
Application of Automatic Segmentation on Super-Resolution Reconstruction MR Images of the Abnormal Fetal Brain.
AJNR Am J Neuroradiol. 2023 Apr;44(4):486-491. doi: 10.3174/ajnr.A7808. Epub 2023 Mar 2.

引用本文的文献

1
Comparative study of 2D vs. 3D AI-enhanced ultrasound for fetal crown-rump length evaluation in the first trimester.
BMC Pregnancy Childbirth. 2025 Jul 16;25(1):766. doi: 10.1186/s12884-025-07823-6.
2
Advancements in MRI application in the morphological development of fetal cerebral venous system: a review.
Childs Nerv Syst. 2025 Jun 2;41(1):201. doi: 10.1007/s00381-025-06862-w.
4
Evaluating the effects of volume censoring on fetal functional connectivity.
Sci Rep. 2025 Apr 16;15(1):13181. doi: 10.1038/s41598-025-96538-x.
5
Antenatal Opioid Exposure and Global and Regional Brain Volumes in Newborns.
JAMA Pediatr. 2025 Apr 7. doi: 10.1001/jamapediatrics.2025.0277.
6
Measuring and interpreting individual differences in fetal, infant, and toddler neurodevelopment.
Dev Cogn Neurosci. 2025 Mar 1;73:101539. doi: 10.1016/j.dcn.2025.101539.
10
Self-Enhanced Mixed Attention Network for Three-Modal Images Few-Shot Semantic Segmentation.
Sensors (Basel). 2023 Jul 22;23(14):6612. doi: 10.3390/s23146612.

本文引用的文献

4
Deriving external forces via convolutional neural networks for biomedical image segmentation.
Biomed Opt Express. 2019 Jul 8;10(8):3800-3814. doi: 10.1364/BOE.10.003800. eCollection 2019 Aug 1.
5
Automatic brain tissue segmentation in fetal MRI using convolutional neural networks.
Magn Reson Imaging. 2019 Dec;64:77-89. doi: 10.1016/j.mri.2019.05.020. Epub 2019 Jun 7.
6
Automatic fetal body and amniotic fluid segmentation from fetal ultrasound images by encoder-decoder network with inner layers.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1485-1488. doi: 10.1109/EMBC.2017.8037116.
7
SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound.
IEEE Trans Med Imaging. 2017 Nov;36(11):2204-2215. doi: 10.1109/TMI.2017.2712367. Epub 2017 Jul 11.
8
A review on automatic fetal and neonatal brain MRI segmentation.
Neuroimage. 2018 Apr 15;170:231-248. doi: 10.1016/j.neuroimage.2017.06.074. Epub 2017 Jun 28.
10
Segmentation of Fetal Left Ventricle in Echocardiographic Sequences Based on Dynamic Convolutional Neural Networks.
IEEE Trans Biomed Eng. 2017 Aug;64(8):1886-1895. doi: 10.1109/TBME.2016.2628401. Epub 2016 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验