Instituto de Biología Molecular y Celular de Rosario (IBR-Consejo Nacional de Investigaciones Científicas y Técnicas) and Departamento de Microbiología, Facultad de Ciencias Bioquímicasy Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
Biochemistry. 2010 Aug 31;49(34):7367-76. doi: 10.1021/bi1005305.
The first committed step of fatty acid and polyketides biosynthesis, the biotin-dependent carboxylation of an acyl-CoA, is catalyzed by acyl-CoA carboxylases (ACCases) such as acetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC). ACC and PCC in Streptomyces coelicolor are homologue multisubunit complexes that can carboxylate different short chain acyl-CoAs. While ACC is able to carboxylate acetyl-, propionyl-, or butyryl-CoA with approximately the same specificity, PCC only recognizes propionyl- and butyryl-CoA as substrates. How ACC and PCC have such different specificities toward these substrates is only partially understood. To further understand the molecular basis of how the active site residues can modulate the substrate recognition, we mutated D422, N80, R456, and R457 of PccB, the catalytic beta subunit of PCC. The crystal structures of six PccB mutants and the wild type crystal structure were compared systematically to establish the sequence-structure-function relationship that correlates the observed substrate specificity toward acetyl-, propionyl-, and butyryl-CoA with active site geometry. The experimental data confirmed that D422 is a key determinant of substrate specificity, influencing not only the active site properties but further altering protein stability and causing long-range conformational changes. Mutations of N80, R456, and R457 lead to variations in the quaternary structure of the beta subunit and to a concomitant loss of enzyme activity, indicating the importance of these residues in maintaining the active protein conformation as well as a critical role in substrate binding.
脂肪酸和聚酮类生物合成的第一步是酰基辅酶 A 的生物素依赖性羧化,该反应由酰基辅酶 A 羧化酶(ACCases)催化,如乙酰辅酶 A 羧化酶(ACC)和丙酰辅酶 A 羧化酶(PCC)。链霉菌属中 ACC 和 PCC 是同源多亚基复合物,能够羧化不同的短链酰基辅酶 A。虽然 ACC 能够以相似的特异性羧化乙酰基、丙酰基或丁酰基-CoA,但 PCC 仅将丙酰基和丁酰基-CoA 识别为底物。ACC 和 PCC 对这些底物具有如此不同的特异性的原因仅部分被理解。为了进一步了解活性位点残基如何调节底物识别的分子基础,我们突变了 PCC 的催化β亚基 PccB 中的 D422、N80、R456 和 R457。系统比较了六个 PccB 突变体和野生型晶体结构,以建立与观察到的对乙酰基、丙酰基和丁酰基-CoA 的底物特异性相关的序列-结构-功能关系,与活性位点几何形状相关联。实验数据证实 D422 是决定底物特异性的关键因素,不仅影响活性位点特性,而且进一步改变蛋白质稳定性并引起远程构象变化。N80、R456 和 R457 的突变导致β亚基的四级结构发生变化,并伴随酶活性丧失,这表明这些残基在维持活性蛋白构象以及在底物结合中起着重要作用。