Suppr超能文献

链霉菌酰基辅酶 A 羧化酶β亚基的晶体结构和突变分析。

Crystal structures and mutational analyses of acyl-CoA carboxylase beta subunit of Streptomyces coelicolor.

机构信息

Instituto de Biología Molecular y Celular de Rosario (IBR-Consejo Nacional de Investigaciones Científicas y Técnicas) and Departamento de Microbiología, Facultad de Ciencias Bioquímicasy Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.

出版信息

Biochemistry. 2010 Aug 31;49(34):7367-76. doi: 10.1021/bi1005305.

Abstract

The first committed step of fatty acid and polyketides biosynthesis, the biotin-dependent carboxylation of an acyl-CoA, is catalyzed by acyl-CoA carboxylases (ACCases) such as acetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC). ACC and PCC in Streptomyces coelicolor are homologue multisubunit complexes that can carboxylate different short chain acyl-CoAs. While ACC is able to carboxylate acetyl-, propionyl-, or butyryl-CoA with approximately the same specificity, PCC only recognizes propionyl- and butyryl-CoA as substrates. How ACC and PCC have such different specificities toward these substrates is only partially understood. To further understand the molecular basis of how the active site residues can modulate the substrate recognition, we mutated D422, N80, R456, and R457 of PccB, the catalytic beta subunit of PCC. The crystal structures of six PccB mutants and the wild type crystal structure were compared systematically to establish the sequence-structure-function relationship that correlates the observed substrate specificity toward acetyl-, propionyl-, and butyryl-CoA with active site geometry. The experimental data confirmed that D422 is a key determinant of substrate specificity, influencing not only the active site properties but further altering protein stability and causing long-range conformational changes. Mutations of N80, R456, and R457 lead to variations in the quaternary structure of the beta subunit and to a concomitant loss of enzyme activity, indicating the importance of these residues in maintaining the active protein conformation as well as a critical role in substrate binding.

摘要

脂肪酸和聚酮类生物合成的第一步是酰基辅酶 A 的生物素依赖性羧化,该反应由酰基辅酶 A 羧化酶(ACCases)催化,如乙酰辅酶 A 羧化酶(ACC)和丙酰辅酶 A 羧化酶(PCC)。链霉菌属中 ACC 和 PCC 是同源多亚基复合物,能够羧化不同的短链酰基辅酶 A。虽然 ACC 能够以相似的特异性羧化乙酰基、丙酰基或丁酰基-CoA,但 PCC 仅将丙酰基和丁酰基-CoA 识别为底物。ACC 和 PCC 对这些底物具有如此不同的特异性的原因仅部分被理解。为了进一步了解活性位点残基如何调节底物识别的分子基础,我们突变了 PCC 的催化β亚基 PccB 中的 D422、N80、R456 和 R457。系统比较了六个 PccB 突变体和野生型晶体结构,以建立与观察到的对乙酰基、丙酰基和丁酰基-CoA 的底物特异性相关的序列-结构-功能关系,与活性位点几何形状相关联。实验数据证实 D422 是决定底物特异性的关键因素,不仅影响活性位点特性,而且进一步改变蛋白质稳定性并引起远程构象变化。N80、R456 和 R457 的突变导致β亚基的四级结构发生变化,并伴随酶活性丧失,这表明这些残基在维持活性蛋白构象以及在底物结合中起着重要作用。

相似文献

3
AccR, a TetR Family Transcriptional Repressor, Coordinates Short-Chain Acyl Coenzyme A Homeostasis in .
Appl Environ Microbiol. 2020 Jun 2;86(12). doi: 10.1128/AEM.00508-20.
4
Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase.
Nature. 2010 Aug 19;466(7309):1001-5. doi: 10.1038/nature09302.
6
Structure and function of biotin-dependent carboxylases.
Cell Mol Life Sci. 2013 Mar;70(5):863-91. doi: 10.1007/s00018-012-1096-0. Epub 2012 Aug 7.
7
Kinetic and structural analysis of a new group of Acyl-CoA carboxylases found in Streptomyces coelicolor A3(2).
J Biol Chem. 2002 Aug 23;277(34):31228-36. doi: 10.1074/jbc.M203263200. Epub 2002 Jun 4.
8
Biochemical characteristization of propionyl-coenzyme a carboxylase complex of Streptomyces toxytricini.
J Microbiol. 2011 Jun;49(3):407-12. doi: 10.1007/s12275-011-1122-1. Epub 2011 Jun 30.

引用本文的文献

1
Enhancing armeniaspirols production through multi-level engineering of a native Streptomyces producer.
Microb Cell Fact. 2023 Apr 28;22(1):84. doi: 10.1186/s12934-023-02092-4.
2
Discovery, structure, and function of filamentous 3-methylcrotonyl-CoA carboxylase.
Structure. 2023 Jan 5;31(1):100-110.e4. doi: 10.1016/j.str.2022.11.015. Epub 2022 Dec 20.
3
5
Functional Analysis of the and Gene Variants Predicted to Affect Splicing.
Int J Mol Sci. 2021 Apr 16;22(8):4154. doi: 10.3390/ijms22084154.
6
Kinetic, Structural, and Mutational Analysis of Acyl-CoA Carboxylase From YX.
Front Mol Biosci. 2021 Jan 12;7:615614. doi: 10.3389/fmolb.2020.615614. eCollection 2020.
7
AccR, a TetR Family Transcriptional Repressor, Coordinates Short-Chain Acyl Coenzyme A Homeostasis in .
Appl Environ Microbiol. 2020 Jun 2;86(12). doi: 10.1128/AEM.00508-20.
8
De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor.
PLoS One. 2018 Nov 15;13(11):e0207278. doi: 10.1371/journal.pone.0207278. eCollection 2018.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
ACCase 6 is the essential acetyl-CoA carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria.
Microbiology (Reading). 2009 Aug;155(Pt 8):2664-2675. doi: 10.1099/mic.0.027714-0. Epub 2009 May 7.
3
Acetyl-coenzyme A carboxylases: versatile targets for drug discovery.
J Cell Biochem. 2006 Dec 15;99(6):1476-88. doi: 10.1002/jcb.21077.
4
Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3072-7. doi: 10.1073/pnas.0510580103. Epub 2006 Feb 21.
8
Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop.
Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5910-5. doi: 10.1073/pnas.0400891101. Epub 2004 Apr 12.
9
Metabolic engineering for drug discovery and development.
Nat Rev Drug Discov. 2003 Dec;2(12):1019-25. doi: 10.1038/nrd1256.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验