Suppr超能文献

利用多模态数据整合推进精准肿瘤学。

Harnessing multimodal data integration to advance precision oncology.

机构信息

Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Nat Rev Cancer. 2022 Feb;22(2):114-126. doi: 10.1038/s41568-021-00408-3. Epub 2021 Oct 18.

Abstract

Advances in quantitative biomarker development have accelerated new forms of data-driven insights for patients with cancer. However, most approaches are limited to a single mode of data, leaving integrated approaches across modalities relatively underdeveloped. Multimodal integration of advanced molecular diagnostics, radiological and histological imaging, and codified clinical data presents opportunities to advance precision oncology beyond genomics and standard molecular techniques. However, most medical datasets are still too sparse to be useful for the training of modern machine learning techniques, and significant challenges remain before this is remedied. Combined efforts of data engineering, computational methods for analysis of heterogeneous data and instantiation of synergistic data models in biomedical research are required for success. In this Perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods. Advancing along this direction will result in a reimagined class of multimodal biomarkers to propel the field of precision oncology in the coming decade.

摘要

定量生物标志物的研究进展加速了癌症患者的新型数据驱动式洞察方式。然而,大多数方法仅限于单一模式的数据,而跨模式的综合方法相对落后。先进分子诊断、放射学和组织学成像以及规范化临床数据的多模态整合为超越基因组学和标准分子技术的精准肿瘤学提供了机会。然而,大多数医疗数据集仍然过于稀疏,无法用于现代机器学习技术的训练,在这方面得到改善之前,仍然存在重大挑战。要取得成功,需要数据工程、用于分析异构数据的计算方法以及在生物医学研究中实现协同数据模型的实例化等方面的共同努力。在本观点中,我们就如何将互补模式的数据与新兴的多模态人工智能方法相结合提出了看法。沿着这个方向前进,将产生一类重新构想的多模态生物标志物,推动未来十年精准肿瘤学领域的发展。

相似文献

1
Harnessing multimodal data integration to advance precision oncology.
Nat Rev Cancer. 2022 Feb;22(2):114-126. doi: 10.1038/s41568-021-00408-3. Epub 2021 Oct 18.
2
Pathogenomics for accurate diagnosis, treatment, prognosis of oncology: a cutting edge overview.
J Transl Med. 2024 Feb 3;22(1):131. doi: 10.1186/s12967-024-04915-3.
4
Precision Cancer Medicine 2.0-Oncology in the postgenomic era.
Mol Oncol. 2024 Sep;18(9):2065-2069. doi: 10.1002/1878-0261.13707. Epub 2024 Aug 7.
6
Harnessing the potential of reverse-phase protein array technology: Advancing precision oncology strategies.
Cancer Sci. 2024 May;115(5):1378-1387. doi: 10.1111/cas.16123. Epub 2024 Feb 26.
7
Artificial intelligence in oncology.
Cancer Sci. 2020 May;111(5):1452-1460. doi: 10.1111/cas.14377. Epub 2020 Mar 21.
8
Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology.
Nat Rev Clin Oncol. 2019 Nov;16(11):703-715. doi: 10.1038/s41571-019-0252-y. Epub 2019 Aug 9.
9
Artificial Intelligence for Precision Oncology.
Adv Exp Med Biol. 2022;1361:249-268. doi: 10.1007/978-3-030-91836-1_14.
10
Artificial intelligence for multimodal data integration in oncology.
Cancer Cell. 2022 Oct 10;40(10):1095-1110. doi: 10.1016/j.ccell.2022.09.012.

引用本文的文献

1
Multimodal integration strategies for clinical application in oncology.
Front Pharmacol. 2025 Aug 20;16:1609079. doi: 10.3389/fphar.2025.1609079. eCollection 2025.
10
Advancements in DNA methylation technologies and their application in cancer diagnosis.
Epigenetics. 2025 Dec;20(1):2539995. doi: 10.1080/15592294.2025.2539995. Epub 2025 Jul 28.

本文引用的文献

1
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
2
Discovery through clinical sequencing in oncology.
Nat Cancer. 2020 Aug;1(8):774-783. doi: 10.1038/s43018-020-0100-0. Epub 2020 Aug 10.
3
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.
Nat Cancer. 2020 Aug;1(8):800-810. doi: 10.1038/s43018-020-0085-8. Epub 2020 Jul 27.
4
Exploring tissue architecture using spatial transcriptomics.
Nature. 2021 Aug;596(7871):211-220. doi: 10.1038/s41586-021-03634-9. Epub 2021 Aug 11.
5
Spatial omics and multiplexed imaging to explore cancer biology.
Nat Methods. 2021 Sep;18(9):997-1012. doi: 10.1038/s41592-021-01203-6. Epub 2021 Aug 2.
6
Learning mutational signatures and their multidimensional genomic properties with TensorSignatures.
Nat Commun. 2021 Jun 15;12(1):3628. doi: 10.1038/s41467-021-23551-9.
7
Synthetic lethality-mediated precision oncology via the tumor transcriptome.
Cell. 2021 Apr 29;184(9):2487-2502.e13. doi: 10.1016/j.cell.2021.03.030. Epub 2021 Apr 14.
8
Artificial Intelligence in Cancer Research and Precision Medicine.
Cancer Discov. 2021 Apr;11(4):900-915. doi: 10.1158/2159-8290.CD-21-0090.
9
Pan-cancer image-based detection of clinically actionable genetic alterations.
Nat Cancer. 2020 Aug;1(8):789-799. doi: 10.1038/s43018-020-0087-6. Epub 2020 Jul 27.
10
A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology-Radiology Fusion.
J Magn Reson Imaging. 2021 Aug;54(2):462-471. doi: 10.1002/jmri.27599. Epub 2021 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验