Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Nat Rev Cancer. 2022 Feb;22(2):114-126. doi: 10.1038/s41568-021-00408-3. Epub 2021 Oct 18.
Advances in quantitative biomarker development have accelerated new forms of data-driven insights for patients with cancer. However, most approaches are limited to a single mode of data, leaving integrated approaches across modalities relatively underdeveloped. Multimodal integration of advanced molecular diagnostics, radiological and histological imaging, and codified clinical data presents opportunities to advance precision oncology beyond genomics and standard molecular techniques. However, most medical datasets are still too sparse to be useful for the training of modern machine learning techniques, and significant challenges remain before this is remedied. Combined efforts of data engineering, computational methods for analysis of heterogeneous data and instantiation of synergistic data models in biomedical research are required for success. In this Perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods. Advancing along this direction will result in a reimagined class of multimodal biomarkers to propel the field of precision oncology in the coming decade.
定量生物标志物的研究进展加速了癌症患者的新型数据驱动式洞察方式。然而,大多数方法仅限于单一模式的数据,而跨模式的综合方法相对落后。先进分子诊断、放射学和组织学成像以及规范化临床数据的多模态整合为超越基因组学和标准分子技术的精准肿瘤学提供了机会。然而,大多数医疗数据集仍然过于稀疏,无法用于现代机器学习技术的训练,在这方面得到改善之前,仍然存在重大挑战。要取得成功,需要数据工程、用于分析异构数据的计算方法以及在生物医学研究中实现协同数据模型的实例化等方面的共同努力。在本观点中,我们就如何将互补模式的数据与新兴的多模态人工智能方法相结合提出了看法。沿着这个方向前进,将产生一类重新构想的多模态生物标志物,推动未来十年精准肿瘤学领域的发展。