Suppr超能文献

铜绿假单胞菌对环丙沙星耐药性的发展涉及多个反应阶段和多种蛋白质。

The development of ciprofloxacin resistance in Pseudomonas aeruginosa involves multiple response stages and multiple proteins.

机构信息

Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Antimicrob Agents Chemother. 2010 Nov;54(11):4626-35. doi: 10.1128/AAC.00762-10. Epub 2010 Aug 9.

Abstract

Microbes have developed resistance to nearly every antibiotic, yet the steps leading to drug resistance remain unclear. Here we report a multistage process by which Pseudomonas aeruginosa acquires drug resistance following exposure to ciprofloxacin at levels ranging from 0.5× to 8× the initial MIC. In stage I, susceptible cells are killed en masse by the exposure. In stage II, a small, slow to nongrowing population survives antibiotic exposure that does not exhibit significantly increased resistance according to the MIC measure. In stage III, exhibited at 0.5× to 4× the MIC, a growing population emerges to reconstitute the population, and these cells display heritable increases in drug resistance of up to 50 times the original level. We studied the stage III cells by proteomic methods to uncover differences in the regulatory pathways that are involved in this phenotype, revealing upregulation of phosphorylation on two proteins, succinate-semialdehyde dehydrogenase (SSADH) and methylmalonate-semialdehyde dehydrogenase (MMSADH), and also revealing upregulation of a highly conserved protein of unknown function. Transposon disruption in the encoding genes for each of these targets substantially dampened the ability of cells to develop the stage III phenotype. Considering these results in combination with computational models of resistance and genomic sequencing results, we postulate that stage III heritable resistance develops from a combination of both genomic mutations and modulation of one or more preexisting cellular pathways.

摘要

微生物几乎对所有抗生素都产生了耐药性,但导致耐药性的步骤仍不清楚。在这里,我们报告了铜绿假单胞菌在接触环丙沙星的水平从初始 MIC 的 0.5×到 8×的情况下获得耐药性的多阶段过程。在第一阶段,大量敏感细胞被暴露杀死。在第二阶段,一小部分生长缓慢的非生长细胞在不根据 MIC 测量显示出明显增加的耐药性的情况下幸存下来。在第三阶段,表现为 MIC 的 0.5×至 4×,一个生长的细胞群出现以重新构成群体,这些细胞表现出高达原始水平 50 倍的可遗传耐药性增加。我们通过蛋白质组学方法研究了第三阶段的细胞,以揭示参与这种表型的调控途径的差异,发现两种蛋白质琥珀酸半醛脱氢酶 (SSADH) 和甲基丙二酰半醛脱氢酶 (MMSADH) 的磷酸化水平上调,同时还发现一种高度保守的未知功能蛋白的上调。这些靶基因的转座子失活大大削弱了细胞发展第三阶段表型的能力。考虑到这些结果以及耐药性的计算模型和基因组测序结果,我们假设第三阶段的遗传耐药性是由基因组突变和一个或多个现有细胞途径的调节的组合发展而来的。

相似文献

1
The development of ciprofloxacin resistance in Pseudomonas aeruginosa involves multiple response stages and multiple proteins.
Antimicrob Agents Chemother. 2010 Nov;54(11):4626-35. doi: 10.1128/AAC.00762-10. Epub 2010 Aug 9.
2
Mutant prevention concentration of ciprofloxacin and enrofloxacin against Escherichia coli, Salmonella Typhimurium and Pseudomonas aeruginosa.
Vet Microbiol. 2007 Jan 31;119(2-4):304-10. doi: 10.1016/j.vetmic.2006.08.018. Epub 2006 Aug 17.
5
Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2005 Aug;49(8):3222-7. doi: 10.1128/AAC.49.8.3222-3227.2005.
6
Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus.
Extremophiles. 2013 Mar;17(2):205-16. doi: 10.1007/s00792-012-0507-3. Epub 2013 Jan 8.
7
SPM-1-producing Pseudomonas aeruginosa ST277 clone recovered from microbiota of migratory birds.
Diagn Microbiol Infect Dis. 2018 Mar;90(3):221-227. doi: 10.1016/j.diagmicrobio.2017.11.003. Epub 2017 Nov 10.
8
In vivo selection of a target/efflux double mutant of Pseudomonas aeruginosa by ciprofloxacin therapy.
J Antimicrob Chemother. 2001 Oct;48(4):553-5. doi: 10.1093/jac/48.4.553.
9
Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump.
Antimicrob Agents Chemother. 2008 Jul;52(7):2455-62. doi: 10.1128/AAC.01107-07. Epub 2008 May 12.

引用本文的文献

1
Proteomic and metabolomic responses of priority bacterial pathogens to subinhibitory concentration of antibiotics.
NPJ Antimicrob Resist. 2025 Sep 16;3(1):80. doi: 10.1038/s44259-025-00147-7.
2
Proteomic Insights into Bacterial Responses to Antibiotics: A Narrative Review.
Int J Mol Sci. 2025 Jul 27;26(15):7255. doi: 10.3390/ijms26157255.
3
A role for the stringent response in ciprofloxacin resistance in Pseudomonas aeruginosa.
Sci Rep. 2024 Apr 13;14(1):8598. doi: 10.1038/s41598-024-59188-z.
4
Adaptive response of under serial ciprofloxacin exposure.
Microbiology (Reading). 2024 Apr;170(3). doi: 10.1099/mic.0.001443.
6
Anti-quorum sensing potential of selenium nanoparticles against LasI/R, RhlI/R, and PQS/MvfR in : a molecular docking approach.
Front Mol Biosci. 2023 Aug 10;10:1203672. doi: 10.3389/fmolb.2023.1203672. eCollection 2023.
7
Comparison of freeze-thaw and sonication cycle-based methods for extracting AMR-associated metabolites from .
Front Microbiol. 2023 Apr 27;14:1152162. doi: 10.3389/fmicb.2023.1152162. eCollection 2023.
9
Bacterial persisters in long-term infection: Emergence and fitness in a complex host environment.
PLoS Pathog. 2020 Dec 14;16(12):e1009112. doi: 10.1371/journal.ppat.1009112. eCollection 2020 Dec.
10
The Role of Proteomics in Bacterial Response to Antibiotics.
Pharmaceuticals (Basel). 2020 Aug 27;13(9):214. doi: 10.3390/ph13090214.

本文引用的文献

1
Effect of subinhibitory concentrations of antibiotics on intrachromosomal homologous recombination in Escherichia coli.
Antimicrob Agents Chemother. 2009 Aug;53(8):3411-5. doi: 10.1128/AAC.00358-09. Epub 2009 Jun 1.
2
Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility.
Antimicrob Agents Chemother. 2008 Dec;52(12):4486-91. doi: 10.1128/AAC.00222-08. Epub 2008 Sep 29.
3
A common mechanism of cellular death induced by bactericidal antibiotics.
Cell. 2007 Sep 7;130(5):797-810. doi: 10.1016/j.cell.2007.06.049.
4
Mapping phosphoproteins in Mycoplasma genitalium and Mycoplasma pneumoniae.
BMC Microbiol. 2007 Jul 2;7:63. doi: 10.1186/1471-2180-7-63.
5
Efflux pumps as antimicrobial resistance mechanisms.
Ann Med. 2007;39(3):162-76. doi: 10.1080/07853890701195262.
6
PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli.
Antimicrob Agents Chemother. 2007 Jun;51(6):2092-9. doi: 10.1128/AAC.00052-07. Epub 2007 Apr 9.
7
Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis.
Curr Opin Pharmacol. 2007 Jun;7(3):244-51. doi: 10.1016/j.coph.2006.12.005. Epub 2007 Apr 5.
8
9
Persister cells, dormancy and infectious disease.
Nat Rev Microbiol. 2007 Jan;5(1):48-56. doi: 10.1038/nrmicro1557. Epub 2006 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验