Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15240-5. doi: 10.1073/pnas.1005101107. Epub 2010 Aug 9.
Circadian pacemaking requires the orderly synthesis, posttranslational modification, and degradation of clock proteins. In mammals, mutations in casein kinase 1 (CK1) epsilon or delta can alter the circadian period, but the particular functions of the WT isoforms within the pacemaker remain unclear. We selectively targeted WT CK1epsilon and CK1delta using pharmacological inhibitors (PF-4800567 and PF-670462, respectively) alongside genetic knockout and knockdown to reveal that CK1 activity is essential to molecular pacemaking. Moreover, CK1delta is the principal regulator of the clock period: pharmacological inhibition of CK1delta, but not CK1epsilon, significantly lengthened circadian rhythms in locomotor activity in vivo and molecular oscillations in the suprachiasmatic nucleus (SCN) and peripheral tissue slices in vitro. Period lengthening mediated by CK1delta inhibition was accompanied by nuclear retention of PER2 protein both in vitro and in vivo. Furthermore, phase mapping of the molecular clockwork in vitro showed that PF-670462 treatment lengthened the period in a phase-specific manner, selectively extending the duration of PER2-mediated transcriptional feedback. These findings suggested that CK1delta inhibition might be effective in increasing the amplitude and synchronization of disrupted circadian oscillators. This was tested using arrhythmic SCN slices derived from Vipr2(-/-) mice, in which PF-670462 treatment transiently restored robust circadian rhythms of PER2::Luc bioluminescence. Moreover, in mice rendered behaviorally arrhythmic by the Vipr2(-/-) mutation or by constant light, daily treatment with PF-670462 elicited robust 24-h activity cycles that persisted throughout treatment. Accordingly, selective pharmacological targeting of the endogenous circadian regulator CK1delta offers an avenue for therapeutic modulation of perturbed circadian behavior.
生物钟的计时功能需要时钟蛋白的有序合成、翻译后修饰和降解。在哺乳动物中,酪蛋白激酶 1(CK1)ε或δ的突变可以改变昼夜节律周期,但生物钟计时功能中 WT 同工型的特定功能仍不清楚。我们使用药理学抑制剂(PF-4800567 和 PF-670462 分别针对 CK1ε和 CK1δ)以及基因敲除和敲低来选择性靶向 WT CK1ε和 CK1δ,以揭示 CK1 活性对分子计时的重要性。此外,CK1δ是时钟周期的主要调节因子:CK1δ的药理学抑制,但不是 CK1ε,显著延长了体内运动活性的昼夜节律和体外视交叉上核(SCN)和周围组织切片的分子振荡。CK1δ抑制介导的周期延长伴随着 PER2 蛋白在体外和体内的核保留。此外,体外分子时钟工作的相位映射显示,PF-670462 处理以特定相位的方式延长了周期,选择性地延长了 PER2 介导的转录反馈的持续时间。这些发现表明,CK1δ 抑制可能有效增加破坏的生物钟振荡器的幅度和同步性。这在源自 Vipr2(-/-) 小鼠的心律失常 SCN 切片中进行了测试,其中 PF-670462 处理在短暂时间内恢复了强大的 PER2::Luc 生物发光的昼夜节律。此外,在由 Vipr2(-/-)突变或持续光照导致行为性心律失常的小鼠中,每日用 PF-670462 处理可引起强大的 24 小时活动周期,在整个治疗过程中持续存在。因此,选择性药理学靶向内源性生物钟调节因子 CK1δ 为治疗性调节受扰的昼夜节律行为提供了一种途径。