De Meyer Geert, Shapiro Fred, Vanderstichele Hugo, Vanmechelen Eugeen, Engelborghs Sebastiaan, De Deyn Peter Paul, Coart Els, Hansson Oskar, Minthon Lennart, Zetterberg Henrik, Blennow Kaj, Shaw Leslie, Trojanowski John Q
Innogenetics, Industriepark Zwijnaarde 7, Box 4, B-9052 Gent, Belgium.
Arch Neurol. 2010 Aug;67(8):949-56. doi: 10.1001/archneurol.2010.179.
To identify biomarker patterns typical for Alzheimer disease (AD) in an independent, unsupervised way, without using information on the clinical diagnosis.
Mixture modeling approach.
Alzheimer's Disease Neuroimaging Initiative database.
Cognitively normal persons, patients with AD, and individuals with mild cognitive impairment.
Cerebrospinal fluid-derived beta-amyloid protein 1-42, total tau protein, and phosphorylated tau(181P) protein concentrations were used as biomarkers on a clinically well-characterized data set. The outcome of the qualification analysis was validated on 2 additional data sets, 1 of which was autopsy confirmed.
Using the US Alzheimer's Disease Neuroimaging Initiative data set, a cerebrospinal fluid beta-amyloid protein 1-42/phosphorylated tau(181P) biomarker mixture model identified 1 feature linked to AD, while the other matched the "healthy" status. The AD signature was found in 90%, 72%, and 36% of patients in the AD, mild cognitive impairment, and cognitively normal groups, respectively. The cognitively normal group with the AD signature was enriched in apolipoprotein E epsilon4 allele carriers. Results were validated on 2 other data sets. In 1 study consisting of 68 autopsy-confirmed AD cases, 64 of 68 patients (94% sensitivity) were correctly classified with the AD feature. In another data set with patients (n = 57) with mild cognitive impairment followed up for 5 years, the model showed a sensitivity of 100% in patients progressing to AD.
The mixture modeling approach, totally independent of clinical AD diagnosis, correctly classified patients with AD. The unexpected presence of the AD signature in more than one-third of cognitively normal subjects suggests that AD pathology is active and detectable earlier than has heretofore been envisioned.
以独立、无监督的方式识别阿尔茨海默病(AD)典型的生物标志物模式,不使用临床诊断信息。
混合建模方法。
阿尔茨海默病神经影像倡议数据库。
认知正常者、AD患者和轻度认知障碍者。
在一个临床特征明确的数据集中,将脑脊液来源的β-淀粉样蛋白1-42、总tau蛋白和磷酸化tau(181P)蛋白浓度用作生物标志物。在另外两个数据集中验证了定性分析的结果,其中一个数据集经尸检确认。
使用美国阿尔茨海默病神经影像倡议数据集,脑脊液β-淀粉样蛋白1-42/磷酸化tau(181P)生物标志物混合模型识别出1个与AD相关的特征,另一个与“健康”状态匹配。AD特征分别在AD组、轻度认知障碍组和认知正常组中90%、72%和36%的患者中被发现。具有AD特征的认知正常组中载脂蛋白Eε4等位基因携带者富集。结果在另外两个数据集中得到验证。在一项由68例经尸检确诊的AD病例组成的研究中,68例患者中有64例(敏感性为94%)被正确分类为具有AD特征。在另一个对57例轻度认知障碍患者进行了5年随访的数据集中,该模型对进展为AD的患者显示出100%的敏感性。
混合建模方法完全独立于临床AD诊断,正确地对AD患者进行了分类。超过三分之一的认知正常受试者中意外出现AD特征表明,AD病理过程是活跃的,并且比以前预想的更早可检测到。