Suppr超能文献

通过酪氨酸激酶靶向淋巴管功能。

Targeting lymphatic vessel functions through tyrosine kinases.

作者信息

Williams Steven P, Karnezis Tara, Achen Marc G, Stacker Steven A

机构信息

Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.

出版信息

J Angiogenes Res. 2010 Aug 11;2:13. doi: 10.1186/2040-2384-2-13.

Abstract

The lymphatic vascular system is actively involved in tissue fluid homeostasis, immune surveillance and fatty acid transport. Pathological conditions can arise from injury to the lymphatics, or they can be recruited in the context of cancer to facilitate metastasis. Protein tyrosine kinases are central players in signal transduction networks and regulation of cell behavior. In the lymphatic endothelium, tyrosine kinases are involved in processes such as the maintenance of existing lymphatic vessels, growth and maturation of new vessels and modulation of their identity and function. As such, they are attractive targets for both existing inhibitors and the development of new inhibitors which affect lymphangiogenesis in pathological states such as cancer. RNAi screening provides an opportunity to identify the functional role of tyrosine kinases in the lymphatics. This review will discuss the role of tyrosine kinases in lymphatic biology and the potential use of inhibitors for anti-lymphangiogenic therapy.

摘要

淋巴血管系统积极参与组织液稳态、免疫监视和脂肪酸运输。病理状况可能源于淋巴管损伤,或者在癌症背景下被募集以促进转移。蛋白质酪氨酸激酶是信号转导网络和细胞行为调节的核心参与者。在淋巴管内皮中,酪氨酸激酶参与诸如维持现有淋巴管、新血管的生长和成熟以及调节其特性和功能等过程。因此,它们是现有抑制剂以及开发影响癌症等病理状态下淋巴管生成的新抑制剂的有吸引力的靶点。RNA干扰筛选为确定酪氨酸激酶在淋巴管中的功能作用提供了机会。本综述将讨论酪氨酸激酶在淋巴生物学中的作用以及抑制剂在抗淋巴管生成治疗中的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cddd/2925338/7a321c0e35b0/2040-2384-2-13-1.jpg

相似文献

1
Targeting lymphatic vessel functions through tyrosine kinases.
J Angiogenes Res. 2010 Aug 11;2:13. doi: 10.1186/2040-2384-2-13.
2
Lymphangiogenic growth factors, receptors and therapies.
Thromb Haemost. 2003 Aug;90(2):167-84. doi: 10.1160/TH03-04-0200.
4
Lymphangiogenesis, inflammation and metastasis.
Anticancer Res. 2005 Nov-Dec;25(6C):4503-11.
5
Current strategies for modulating lymphangiogenesis signalling pathways in human disease.
Curr Med Chem. 2006;13(7):783-92. doi: 10.2174/092986706776055625.
6
Molecular control of lymphatic metastasis.
Ann N Y Acad Sci. 2008;1131:225-34. doi: 10.1196/annals.1413.020.
8
Mechanisms of lymphangiogenesis: targets for blocking the metastatic spread of cancer.
Curr Cancer Drug Targets. 2005 Dec;5(8):561-71. doi: 10.2174/156800905774932833.
9
Molecular biology and pathology of lymphangiogenesis.
Annu Rev Pathol. 2008;3:367-97. doi: 10.1146/annurev.pathmechdis.3.121806.151515.
10
[Lymphangiogenesis in cancerous tumours].
Ginekol Pol. 2008 Sep;79(9):625-9.

引用本文的文献

1
Lymphatic Tissue Bioengineering for the Treatment of Postsurgical Lymphedema.
Bioengineering (Basel). 2022 Apr 6;9(4):162. doi: 10.3390/bioengineering9040162.
2
Soluble Vegfr3 gene therapy suppresses multi-organ metastasis in a mouse mammary cancer model.
Cancer Sci. 2020 Aug;111(8):2837-2849. doi: 10.1111/cas.14531. Epub 2020 Jul 4.
3
The Lymphatic System in Obesity, Insulin Resistance, and Cardiovascular Diseases.
Front Physiol. 2019 Nov 14;10:1402. doi: 10.3389/fphys.2019.01402. eCollection 2019.
4
Platelet-derived growth factors induced lymphangiogenesis: evidence, unanswered questions and upcoming challenges.
Arch Med Sci. 2015 Mar 16;11(1):57-66. doi: 10.5114/aoms.2015.49217. Epub 2015 Mar 14.
5
Digitoxin and its analogs as novel cancer therapeutics.
Exp Hematol Oncol. 2012 Apr 5;1(1):4. doi: 10.1186/2162-3619-1-4.

本文引用的文献

1
Src tyrosine kinase inhibition suppresses lymphangiogenesis in vitro and in vivo.
Curr Cancer Drug Targets. 2010 Aug;10(5):546-53. doi: 10.2174/156800910791517181.
2
Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles.
Nature. 2010 Apr 15;464(7291):1067-70. doi: 10.1038/nature08956. Epub 2010 Mar 21.
3
VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts.
EMBO J. 2010 Apr 21;29(8):1377-88. doi: 10.1038/emboj.2010.30. Epub 2010 Mar 11.
4
From combinatorial peptide selection to drug prototype (II): targeting the epidermal growth factor receptor pathway.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5118-23. doi: 10.1073/pnas.0915146107. Epub 2010 Feb 26.
5
From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5112-7. doi: 10.1073/pnas.0915141107. Epub 2010 Feb 26.
6
Eph receptors and ephrins in cancer: bidirectional signalling and beyond.
Nat Rev Cancer. 2010 Mar;10(3):165-80. doi: 10.1038/nrc2806.
7
Lymphangiogenesis: Molecular mechanisms and future promise.
Cell. 2010 Feb 19;140(4):460-76. doi: 10.1016/j.cell.2010.01.045.
8
Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRbeta/B-RAF.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4299-304. doi: 10.1073/pnas.0909299107. Epub 2010 Feb 12.
9
Targeting the cancer kinome through polypharmacology.
Nat Rev Cancer. 2010 Feb;10(2):130-7. doi: 10.1038/nrc2787.
10
Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3.
J Cell Biol. 2010 Jan 11;188(1):115-30. doi: 10.1083/jcb.200903137.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验