Institute for Occupational Medicine of Cologne University/Germany.
J Occup Med Toxicol. 2010 Aug 11;5:23. doi: 10.1186/1745-6673-5-23.
A German cohort study on 1,528 carbon black production workers estimated an elevated lung cancer SMR ranging from 1.8-2.2 depending on the reference population. No positive trends with carbon black exposures were noted in the analyses. A nested case control study, however, identified smoking and previous exposures to known carcinogens, such as crystalline silica, received prior to work in the carbon black industry as important risk factors.We used a Bayesian procedure to adjust the SMR, based on a prior of seven independent parameter distributions describing smoking behaviour and crystalline silica dust exposure (as indicator of a group of correlated carcinogen exposures received previously) in the cohort and population as well as the strength of the relationship of these factors with lung cancer mortality. We implemented the approach by Markov Chain Monte Carlo Methods (MCMC) programmed in R, a statistical computing system freely available on the internet, and we provide the program code.
When putting a flat prior to the SMR a Markov chain of length 1,000,000 returned a median posterior SMR estimate (that is, the adjusted SMR) in the range between 1.32 (95% posterior interval: 0.7, 2.1) and 1.00 (0.2, 3.3) depending on the method of assessing previous exposures.
Bayesian bias adjustment is an excellent tool to effectively combine data about confounders from different sources. The usually calculated lung cancer SMR statistic in a cohort of carbon black workers overestimated effect and precision when compared with the Bayesian results. Quantitative bias adjustment should become a regular tool in occupational epidemiology to address narrative discussions of potential distortions.
一项针对 1528 名炭黑生产工人的德国队列研究估计,肺癌 SMR 介于 1.8-2.2 之间,具体取决于参考人群。分析中未发现与炭黑暴露相关的阳性趋势。然而,一项巢式病例对照研究确定吸烟和以前接触过已知的致癌物质(如结晶二氧化硅)是在进入炭黑行业之前接触的,这些是重要的危险因素。我们使用贝叶斯程序根据七个独立参数分布的先验值来调整 SMR,这些参数分布描述了队列和人群中的吸烟行为和结晶二氧化硅粉尘暴露(作为以前接触过一组相关致癌物质的指标)以及这些因素与肺癌死亡率之间关系的强度。我们通过在互联网上免费提供的统计计算系统 R 中的马尔可夫链蒙特卡罗方法(MCMC)来实现该方法,并提供了程序代码。
当对 SMR 进行平坦先验时,长度为 1000000 的马尔可夫链在 1.32(95%后验区间:0.7,2.1)和 1.00(0.2,3.3)之间的范围内返回中位数后验 SMR 估计值(即调整后的 SMR),具体取决于以前暴露评估方法。
贝叶斯偏差调整是一种极好的工具,可以有效地结合来自不同来源的混杂因素数据。与贝叶斯结果相比,在炭黑工人队列中通常计算的肺癌 SMR 统计数据高估了效应和精度。定量偏差调整应成为职业流行病学中的常规工具,以解决潜在扭曲的叙述讨论。