Suppr超能文献

联合遗传减弱髓鞘和神经递质介导的生长抑制不足以促进血清素能轴突再生。

Combined genetic attenuation of myelin and semaphorin-mediated growth inhibition is insufficient to promote serotonergic axon regeneration.

机构信息

Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA.

出版信息

J Neurosci. 2010 Aug 11;30(32):10899-904. doi: 10.1523/JNEUROSCI.2269-10.2010.

Abstract

After CNS injuries, axon growth inhibitors from the myelin and the scar tissue at the injury site are considered major impediments to axon regeneration. The presence of several classes of inhibitors with multiple members in each class suggests functional redundancy in growth inhibition. To test redundancy within the myelin inhibitory pathway, we analyzed raphe spinal serotonergic (5-HT) axon regeneration in mice deficient in two major myelin inhibitors, Nogo and MAG, and their common receptor NgR1 (or NgR). After a complete transection spinal cord injury, there was no significant enhancement of 5-HT axon regeneration beyond the injury site in either Nogo/MAG/NgR1 triple mutants or NgR1 single mutants. Occasional, genotype-independent traversal of 5-HT axons through GFAP-positive tissue bridges at the injury site implicates GFAP-negative lesion areas as especially inhibitory to 5-HT axons. To assess the contribution of class 3 Semaphorins that are expressed by GFAP-negative meningeal fibroblasts at the injury site, we analyzed mice deficient in PlexinA3 and PlexinA4, two key receptors for class 3 Semaphorins, with or without additional NgR1 deletion. No enhanced regeneration of 5-HT or corticospinal axons was detected in PlexinA3/PlexinA4 double mutants or PlexinA3/PlexinA4/NgR1 triple mutants through a complete transection injury. In contrast with previous reports, these data demonstrate that attenuating myelin or Semaphorin-mediated inhibition of axon growth is insufficient to promote 5-HT axon regeneration and further indicate that even attenuating both classes of inhibitory influences is insufficient to promote regeneration of injured axons through a complete transection spinal cord injury.

摘要

中枢神经系统损伤后,来自髓鞘和损伤部位瘢痕组织的轴突生长抑制剂被认为是轴突再生的主要障碍。存在几类具有多种成员的抑制剂表明生长抑制存在功能冗余。为了测试髓鞘抑制途径中的冗余性,我们分析了在缺乏两种主要髓鞘抑制剂 Nogo 和 MAG 及其共同受体 NgR1(或 NgR)的小鼠中缝脊髓 5-HT 轴突的再生。在完全横断脊髓损伤后,在 Nogo/MAG/NgR1 三重突变体或 NgR1 单突变体中,5-HT 轴突在损伤部位以外的再生没有显著增强。偶尔,5-HT 轴突通过损伤部位的 GFAP 阳性组织桥的基因型独立穿越提示 GFAP 阴性损伤区域对 5-HT 轴突特别具有抑制作用。为了评估在损伤部位由 GFAP 阴性脑膜成纤维细胞表达的类 3 神经丝蛋白的贡献,我们分析了缺乏 PlexinA3 和 PlexinA4 的小鼠,这两种是类 3 神经丝蛋白的关键受体,有无额外的 NgR1 缺失。在 PlexinA3/PlexinA4 双突变体或 PlexinA3/PlexinA4/NgR1 三突变体中,通过完全横断损伤,未检测到 5-HT 或皮质脊髓轴突的再生增强。与之前的报道相反,这些数据表明,减轻髓鞘或 Semaphorin 介导的轴突生长抑制不足以促进 5-HT 轴突再生,并进一步表明,即使减轻这两类抑制性影响也不足以促进损伤轴突通过完全横断脊髓损伤的再生。

相似文献

4
Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice.
Neuron. 2010 Jun 10;66(5):663-70. doi: 10.1016/j.neuron.2010.05.002.
5
MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma.
J Neurosci. 2010 May 19;30(20):6825-37. doi: 10.1523/JNEUROSCI.6239-09.2010.
9
Axon regeneration in young adult mice lacking Nogo-A/B.
Neuron. 2003 Apr 24;38(2):187-99. doi: 10.1016/s0896-6273(03)00147-8.
10
Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after Trauma.
J Neurosci. 2019 Apr 24;39(17):3204-3216. doi: 10.1523/JNEUROSCI.2996-18.2019. Epub 2019 Feb 25.

引用本文的文献

1
The Glial Scar: To Penetrate or Not for Motor Pathway Restoration?
Cell Transplant. 2025 Jan-Dec;34:9636897251315271. doi: 10.1177/09636897251315271. Epub 2025 Mar 28.
2
Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury.
eNeuro. 2025 Jan 10;12(1). doi: 10.1523/ENEURO.0418-24.2024. Print 2025 Jan.
5
Regulation of axonal regeneration after mammalian spinal cord injury.
Nat Rev Mol Cell Biol. 2023 Jun;24(6):396-413. doi: 10.1038/s41580-022-00562-y. Epub 2023 Jan 5.
6
Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system.
Front Neurosci. 2022 Sep 20;16:955598. doi: 10.3389/fnins.2022.955598. eCollection 2022.
7
LZK-dependent stimulation of astrocyte reactivity promotes corticospinal axon sprouting.
Front Cell Neurosci. 2022 Sep 15;16:969261. doi: 10.3389/fncel.2022.969261. eCollection 2022.
8
Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar.
Signal Transduct Target Ther. 2022 Jun 17;7(1):184. doi: 10.1038/s41392-022-01010-1.
9
Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System.
Front Cell Neurosci. 2022 Apr 22;16:872501. doi: 10.3389/fncel.2022.872501. eCollection 2022.
10
Modulation of Both Intrinsic and Extrinsic Factors Additively Promotes Rewiring of Corticospinal Circuits after Spinal Cord Injury.
J Neurosci. 2021 Dec 15;41(50):10247-10260. doi: 10.1523/JNEUROSCI.2649-20.2021. Epub 2021 Nov 10.

本文引用的文献

1
EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.
Exp Neurol. 2010 Jun;223(2):582-98. doi: 10.1016/j.expneurol.2010.02.005. Epub 2010 Feb 17.
3
Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS.
Nature. 2009 Dec 24;462(7276):1065-9. doi: 10.1038/nature08628. Epub 2009 Dec 13.
4
Reassessment of corticospinal tract regeneration in Nogo-deficient mice.
J Neurosci. 2009 Jul 8;29(27):8649-54. doi: 10.1523/JNEUROSCI.1864-09.2009.
6
7
PirB is a functional receptor for myelin inhibitors of axonal regeneration.
Science. 2008 Nov 7;322(5903):967-70. doi: 10.1126/science.1161151.
10
TGF-alpha increases astrocyte invasion and promotes axonal growth into the lesion following spinal cord injury in mice.
Exp Neurol. 2008 Nov;214(1):10-24. doi: 10.1016/j.expneurol.2008.06.012. Epub 2008 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验