Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, 100068, China.
Signal Transduct Target Ther. 2022 Jun 17;7(1):184. doi: 10.1038/s41392-022-01010-1.
Spinal cord injury (SCI) is a severe damage usually leading to limb dysesthesia, motor dysfunction, and other physiological disability. We have previously shown that NT3-chitosan could trigger an acute SCI repairment in rats and non-human primates. Due to the negative effect of inhibitory molecules in glial scar on axonal regeneration, however, the role of NT3-chitosan in the treatment of chronic SCI remains unclear. Compared with the fresh wound of acute SCI, how to handle the lesion core and glial scars is a major issue related to chronic-SCI repair. Here we report, in a chronic complete SCI rat model, establishment of magnetic resonance-diffusion tensor imaging (MR-DTI) methods to monitor spatial and temporal changes of the lesion area, which matched well with anatomical analyses. Clearance of the lesion core via suction of cystic tissues and trimming of solid scar tissues before introducing NT3-chitosan using either a rigid tubular scaffold or a soft gel form led to robust neural regeneration, which interconnected the severed ascending and descending axons and accompanied with electrophysiological and motor functional recovery. In contrast, cystic tissue extraction without scar trimming followed by NT3-chitosan injection, resulted in little, if any regeneration. Taken together, after lesion core clearance, NT3-chitosan can be used to enable chronic-SCI repair and MR-DTI-based mapping of lesion area and monitoring of ongoing regeneration can potentially be implemented in clinical studies for subacute/chronic-SCI repair.
脊髓损伤(SCI)是一种严重的损伤,通常导致肢体感觉异常、运动功能障碍和其他生理残疾。我们之前已经表明,NT3-壳聚糖可以在大鼠和非人类灵长类动物中引发急性 SCI 修复。然而,由于胶质瘢痕中抑制分子对轴突再生的负面影响,NT3-壳聚糖在慢性 SCI 治疗中的作用尚不清楚。与急性 SCI 的新鲜伤口相比,如何处理损伤核心和胶质瘢痕是一个与慢性-SCI 修复相关的主要问题。在这里,我们在慢性完全性 SCI 大鼠模型中报告了建立磁共振扩散张量成像(MR-DTI)方法来监测损伤区域的时空变化,这些变化与解剖学分析非常吻合。通过抽吸囊状组织并在引入 NT3-壳聚糖之前修剪固体瘢痕组织来清除损伤核心,无论是使用刚性管状支架还是软凝胶形式,都可以导致强大的神经再生,使切断的上行和下行轴突相互连接,并伴有电生理和运动功能恢复。相比之下,在没有瘢痕修剪的情况下仅抽吸囊状组织,然后注射 NT3-壳聚糖,几乎没有再生。总之,在清除损伤核心后,NT3-壳聚糖可用于实现慢性-SCI 修复,并且基于 MR-DTI 的损伤区域映射和对正在进行的再生的监测有可能在亚急性/慢性-SCI 修复的临床研究中实施。