School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
J Med Syst. 2012 Apr;36(2):677-88. doi: 10.1007/s10916-010-9535-7. Epub 2010 Jun 16.
Arrhythmia is one of the preventive cardiac problems frequently occurs all over the globe. In order to screen such disease at early stage, this work attempts to develop a system approach based on registration, feature extraction using discrete wavelet transform (DWT), feature validation and classification of electrocardiogram (ECG). This diagnostic issue is set as a two-class pattern classification problem (normal sinus rhythm versus arrhythmia) where MIT-BIH database is considered for training, testing and clinical validation. Here DWT is applied to extract multi-resolution coefficients followed by registration using Pan Tompkins algorithm based R point detection. Moreover, feature space is compressed using sub-band principal component analysis (PCA) and statistically validated using independent sample t-test. Thereafter, the machine learning algorithms viz., Gaussian mixture model (GMM), error back propagation neural network (EBPNN) and support vector machine (SVM) are employed for pattern classification. Results are studied and compared. It is observed that both supervised classifiers EBPNN and SVM lead to higher (93.41% and 95.60% respectively) accuracy in comparison with GMM (87.36%) for arrhythmia screening.
心律失常是全球范围内经常发生的一种预防心脏问题。为了在早期阶段筛查这种疾病,本工作尝试开发一种基于注册、使用离散小波变换(DWT)进行特征提取、特征验证和心电图(ECG)分类的系统方法。这个诊断问题被设定为一个二类模式分类问题(正常窦性节律与心律失常),其中 MIT-BIH 数据库用于训练、测试和临床验证。在这里,DWT 用于提取多分辨率系数,然后使用基于 Pan Tompkins 算法的 R 点检测进行注册。此外,使用子带主成分分析(PCA)压缩特征空间,并使用独立样本 t 检验进行统计验证。然后,使用机器学习算法(高斯混合模型(GMM)、误差反向传播神经网络(EBPNN)和支持向量机(SVM))进行模式分类。研究并比较结果。观察到,两种监督分类器 EBPNN 和 SVM 在心律失常筛查方面的准确率(分别为 93.41%和 95.60%)均高于 GMM(87.36%)。