文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于独立成分分析的热红外图像乳腺癌自动检测。

Automated detection of breast cancer in thermal infrared images, based on independent component analysis.

机构信息

Electronics Department, University of Alcalá, Alcalá de Henares, Madrid, Spain.

出版信息

J Med Syst. 2012 Feb;36(1):103-11. doi: 10.1007/s10916-010-9450-y. Epub 2010 Mar 10.


DOI:10.1007/s10916-010-9450-y
PMID:20703744
Abstract

Breast cancer, among women, is the second-most common cancer and the leading cause of cancer death. It has become a major health issue in the world over the past decades and its incidence has increased in recent years mostly due to increased awareness of the importance of screening and population ageing. Early detection is crucial in the effective treatment of breast cancer. Current mammogram screening may turn up many tiny abnormalities that are either not cancerous or are slow-growing cancers that would never progress to the point of killing a woman and might never even become known to her. Ideally a better screening method should find a way of distinguishing the dangerous, aggressive tumors that need to be excised from the more languorous ones that do not. This paper therefore proposes a new method of thermographic image analysis for automated detection of high tumor risk areas, based on independent component analysis (ICA) and on post-processing of the images resulting from this algorithm. Tests carried out on a database enable tumor areas of 4 × 4 pixels on an original thermographic image to be detected. The proposed method has shown that the appearance of a heat anomaly indicating a potentially cancerous zone is reflected as an independent source by ICA analysis of the YCrCb components; the set of available images in our small series is giving us a sensitivity of 100% and a specificity of 94.7%.

摘要

在女性中,乳腺癌是第二大常见癌症,也是癌症死亡的主要原因。在过去几十年中,它已成为全球的主要健康问题,近年来发病率上升,主要是由于对筛查的重要性的认识提高和人口老龄化。早期发现对于乳腺癌的有效治疗至关重要。目前的乳房 X 光筛查可能会发现许多微小的异常,这些异常要么不是癌症,要么是生长缓慢的癌症,永远不会发展到杀死女性的地步,甚至可能永远不会被她发现。理想情况下,一种更好的筛查方法应该找到一种方法来区分需要切除的危险、侵袭性肿瘤与不会发展的缓慢生长的肿瘤。因此,本文提出了一种基于独立成分分析(ICA)和对该算法得到的图像进行后处理的热成像分析新方法,用于自动检测高肿瘤风险区域。在一个数据库上进行的测试能够检测出原始热图像上 4×4 像素的肿瘤区域。该方法表明,潜在癌变区域的热异常表现通过 YCrCb 分量的 ICA 分析反映为一个独立的源;我们的小系列中可用的图像集为我们提供了 100%的灵敏度和 94.7%的特异性。

相似文献

[1]
Automated detection of breast cancer in thermal infrared images, based on independent component analysis.

J Med Syst. 2010-3-10

[2]
A novel model for smart breast cancer detection in thermogram images.

Asian Pac J Cancer Prev. 2014

[3]
Semi-automated breast cancer tumor detection with thermographic video imaging.

Annu Int Conf IEEE Eng Med Biol Soc. 2015

[4]
Thermal Signal Analysis for Breast Cancer Risk Verification.

Stud Health Technol Inform. 2015

[5]
Early diagnosis and detection of breast cancer.

Technol Health Care. 2018

[6]
Role of image thermography in early breast cancer detection- Past, present and future.

Comput Methods Programs Biomed. 2019-9-7

[7]
Thermography based breast cancer detection using texture features and Support Vector Machine.

J Med Syst. 2010-10-19

[8]
A Computational Method to Assist the Diagnosis of Breast Disease Using Dynamic Thermography.

Sensors (Basel). 2020-7-10

[9]
Thermal Imaging Techniques for Breast Screening - A Survey.

Curr Med Imaging. 2020

[10]
Cascaded CNN for View Independent Breast Segmentation in Thermal Images.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

引用本文的文献

[1]
Application of infrared thermography in computer aided diagnosis.

Infrared Phys Technol. 2014-9

[2]
An automated method for the evaluation of breast cancer using infrared thermography.

EXCLI J. 2018-10-26

[3]
Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model.

Sensors (Basel). 2018-8-25

[4]
A Type-2 Fuzzy Image Processing Expert System for Diagnosing Brain Tumors.

J Med Syst. 2015-8-15

[5]
Analysis of breast thermograms using Gabor wavelet anisotropy index.

J Med Syst. 2014-9

[6]
Detection of breast abnormality from thermograms using curvelet transform based feature extraction.

J Med Syst. 2014-4

本文引用的文献

[1]
Application of K- and fuzzy c-means for color segmentation of thermal infrared breast images.

J Med Syst. 2010-2

[2]
Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms.

Ann Intern Med. 2009-11-17

[3]
Comparative study on the use of analytical software to identify the different stages of breast cancer using discrete temperature data.

J Med Syst. 2009-4

[4]
A comparative review of thermography as a breast cancer screening technique.

Integr Cancer Ther. 2009-3

[5]
Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer.

Am J Surg. 2008-10

[6]
Use of a thermocouple for malignant tumor detection. Investigating temperature difference as a diagnostic criterion.

IEEE Eng Med Biol Mag. 2008

[7]
Asymmetry analysis of breast thermograms with morphological image segmentation.

Conf Proc IEEE Eng Med Biol Soc. 2005

[8]
Simulated parametric studies in optical imaging of tumors through temporal log-slope difference mapping.

Med Eng Phys. 2007-12

[9]
Infra-red thermometry in the diagnosis of breast disease.

Lancet. 1961-12-23

[10]
A framework for early discovery of breast tumor using thermography with artificial neural network.

Breast J. 2003

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索