Suppr超能文献

基于区域辅助几何活动轮廓的肺空洞分割方法。

A segmentation method of lung cavities using region aided geometric snakes.

机构信息

Computer Science Department, Shahid Chamran University, Ahvaz, Iran.

出版信息

J Med Syst. 2010 Aug;34(4):419-33. doi: 10.1007/s10916-009-9255-z. Epub 2009 Feb 6.

Abstract

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. Largely changing lung shapes, low contrast and poorly defined boundaries make the lung cavities hard to be distinguished, even in the absence of prominent neighboring structures. In this paper, we utilized a modified geometric-based snake model which could greatly improve the model's segmentation efficiency in capturing complex geometries and dealing with difficult initialization and weak edges. This model integrates the gradient flow forces with region constraints provided by fuzzy c-means clustering. The proposed model has been tested on a database of 30 MR images with 80 slices in each image. The obtained results are compared to manual segmentations of the lung provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

摘要

在医学图像中分割肺组织是许多应用中具有挑战性和重要的任务。特别是,从多个磁共振(MR)图像中自动分割肺空洞对于肿瘤学应用(如放射治疗计划)非常有用。肺形状的大幅变化、低对比度和边界不明确使得肺空洞难以区分,即使在没有明显邻近结构的情况下也是如此。在本文中,我们利用了一种改进的基于几何的蛇模型,该模型可以极大地提高模型在捕捉复杂几何形状和处理困难初始化和弱边界方面的分割效率。该模型将梯度流力与模糊 C 均值聚类提供的区域约束相结合。所提出的模型已经在一个包含 30 个 MR 图像的数据库上进行了测试,每个图像有 80 个切片。将得到的结果与专家放射科医生提供的肺手动分割以及之前的工作进行比较,结果令人鼓舞,表明我们的方法具有很高的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验