Suppr超能文献

基于 Neutrosophic l-均值聚类的乳腺超声图像新分割方法。

A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering.

机构信息

Department of Computer Science, Utah State University, Logan, UT, USA.

出版信息

Med Phys. 2012 Sep;39(9):5669-82. doi: 10.1118/1.4747271.

Abstract

PURPOSE

Fully automatic and accurate breast lesion segmentation is an essential and challenging task. In this paper, the authors develop a novel, effective, and fully automatic method for breast ultrasound (BUS) image segmentation.

METHODS

The segmentation method utilizes a novel phase feature to improve the image quality, and a novel neutrosophic clustering approach to detect the accurate lesion boundary. First, a region of interest is generated to cut off complex background. After speckle reduction, an enhancement algorithm based on phase in max-energy orientation (PMO) is developed to further improve the image quality. The PMO is a newly proposed 2D phase feature obtained by filtering the image in the frequency domain and calculating the phase accumulation in the orientation with maximum energy. Finally, the authors propose a novel clustering approach called neutrosophic l-means (NLM) to detect the lesion boundary. NLM is a generalized clustering method that can be used to solve other clustering problems as well. In this paper, NLM is used to segment images with vague boundaries, and to deal with uncertainty better. To evaluate the performance of the proposed method, the authors compare it with the traditional fuzzy c-means clustering, active contour, level set, and watershed-based segmentation methods, using a common database. Radiologist's manual delineations are used as the golden standards. Five assessment metrics are utilized to evaluate the performance from different aspects. Both accuracy and efficiency are analyzed. Sensitivity analysis is also conducted to test the robustness of the proposed method.

RESULTS

Compared with the other methods, the proposed method generates the most similar boundaries to the radiologist's manual delineations (TP rate is 92.4%, FP rate is 7.2%, and similarity rate is 86.3%; Hausdorff distance is 22.5 pixels and mean absolute distance is 4.8 pixels), with efficient processing speed (averagely 9.8 s per image). Sensitivity analysis shows the robustness of the proposed method as well.

CONCLUSIONS

The proposed method is a fully automatic segmentation method for BUS images that can generate accurate lesion boundaries even for complicated cases. The fast processing speed, robustness, and accuracy of the proposed method suggest its potential applications in clinics.

摘要

目的

全自动且准确的乳房病变分割是一项必不可少且具有挑战性的任务。本文作者开发了一种新颖、有效且全自动的乳房超声(BUS)图像分割方法。

方法

该分割方法利用新颖的相位特征来改善图像质量,并采用新颖的中性聚类方法来检测准确的病变边界。首先,生成感兴趣区域以切除复杂的背景。在去噪后,开发了一种基于相位最大能量方向(PMO)的增强算法来进一步改善图像质量。PMO 是一种新提出的 2D 相位特征,通过在频域中滤波图像并计算具有最大能量的方向上的相位积累得到。最后,作者提出了一种新颖的聚类方法,称为中性聚类 L 均值(NLM),用于检测病变边界。NLM 是一种广义聚类方法,也可用于解决其他聚类问题。在本文中,NLM 用于分割具有模糊边界的图像,并更好地处理不确定性。为了评估所提出方法的性能,作者将其与传统的模糊 C 均值聚类、主动轮廓、水平集和分水岭分割方法进行比较,使用了一个公共数据库。放射科医生的手动勾画被用作金标准。利用五个评估指标从不同方面评估性能。分析了准确性和效率。还进行了敏感性分析以测试所提出方法的稳健性。

结果

与其他方法相比,所提出的方法生成的边界与放射科医生的手动勾画最为相似(TP 率为 92.4%,FP 率为 7.2%,相似度为 86.3%;Hausdorff 距离为 22.5 像素,平均绝对距离为 4.8 像素),并且处理速度高效(平均每张图像 9.8 秒)。敏感性分析也表明了所提出方法的稳健性。

结论

所提出的方法是一种全自动的 BUS 图像分割方法,即使对于复杂情况也能生成准确的病变边界。所提出方法的快速处理速度、稳健性和准确性表明其在临床中的潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验