Suppr超能文献

采用聚类分析解释典型发育儿童粗大运动评分的变异性。

Using cluster analysis to interpret the variability of gross motor scores of children with typical development.

机构信息

Hinton Healthcare Centre, Hinton, Alberta, Canada.

出版信息

Phys Ther. 2010 Oct;90(10):1510-8. doi: 10.2522/ptj.20090308. Epub 2010 Aug 12.

Abstract

BACKGROUND

Longitudinal research on gross motor percentile rank scores of children with typical development has documented intra-individual variability of scoring patterns. Clinically, interpreting these fluctuations presents a challenge for therapists.

OBJECTIVE

The aim of this study was to determine the utility of cluster analysis as a technique to organize the gross motor scoring patterns of children with typical development into clinically relevant groups.

DESIGN

This was a descriptive, exploratory study using data from 2 longitudinal studies.

PARTICIPANTS

Sixty-six children with typical development participated in the study.

METHODS

The children were assessed on the gross motor subscale of the Peabody Developmental Motor Scales at 9, 11, 13, 16, and 21 months of age and on the gross motor subscale of the Peabody Developmental Motor Scales, 2nd edition, at 4, 4.5, 5, and 5.5 years of age. Demographic and health data were collected. Parents were interviewed when the children were 8 years of age. Cluster analysis was conducted. Demographic and health data were compared across clusters.

RESULTS

Four distinct and clinically relevant clusters were identified. A significant difference was found among the clusters for total number of illnesses.

LIMITATIONS

The children in these analyses were at low risk for gross motor problems. Further research with a more high-risk sample is needed to validate the clinical utility of the identified clusters.

CONCLUSIONS

Cluster analysis techniques may offer a mechanism to explore longitudinal data in physical therapy research. The techniques provided a mechanism to group data without losing the richness of information provided by the intra-individual variability of scoring patterns. Clinically, examination of distinct scoring patterns may lead to improved accuracy in screening for gross motor concerns compared with the traditional use of single-assessment cutoff points.

摘要

背景

对典型发育儿童粗大运动百分等级评分的纵向研究记录了评分模式的个体内变异性。临床上,解释这些波动对治疗师来说是一个挑战。

目的

本研究旨在确定聚类分析作为一种技术的实用性,以将典型发育儿童的粗大运动评分模式组织为具有临床意义的组。

设计

这是一项使用两项纵向研究数据的描述性探索性研究。

参与者

共有 66 名典型发育儿童参与了这项研究。

方法

这些儿童在 9、11、13、16 和 21 个月大时接受了 Peabody 发育运动量表粗大运动分量表的评估,在 4、4.5、5 和 5.5 岁时接受了 Peabody 发育运动量表第二版的粗大运动分量表的评估。收集了人口统计学和健康数据。当儿童 8 岁时,对其父母进行了访谈。进行了聚类分析。比较了不同聚类之间的人口统计学和健康数据。

结果

确定了四个独特且具有临床意义的聚类。在总患病次数方面,聚类之间存在显著差异。

局限性

这些分析中的儿童发生粗大运动问题的风险较低。需要对更具高风险的样本进行进一步研究,以验证所确定聚类的临床实用性。

结论

聚类分析技术可能为物理治疗研究中的纵向数据分析提供一种机制。这些技术提供了一种分组数据的机制,而不会丢失评分模式个体内变异性所提供的丰富信息。临床上,与传统使用单一评估截断点相比,检查不同的评分模式可能会提高对粗大运动问题的筛查准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验