Division of Biochemistry, School of Biotechnology, Royal Institute of Technology, Albanova University Center, Roslagstullsbacken 21, Stockholm, Sweden.
J Mol Biol. 2010 Sep 24;402(3):578-94. doi: 10.1016/j.jmb.2010.08.011. Epub 2010 Aug 12.
Flavoenzymes perform a wide range of redox reactions in nature, and a subclass of flavoenzymes carry covalently bound cofactor. The enzyme-flavin bond helps to increase the flavin's redox potential to facilitate substrate oxidation in several oxidases. The formation of the enzyme-flavin covalent bond--the flavinylation reaction--has been studied for the past 40 years. For the most advocated mechanism of autocatalytic flavinylation, the quinone methide mechanism, appropriate stabilization of developing negative charges at the flavin N(1) and N(5) loci is crucial. Whereas the structural basis for stabilization at N(1) is relatively well studied, the structural requisites for charge stabilization at N(5) remain less clear. Here, we show that flavinylation of histidine 167 of pyranose 2-oxidase from Trametes multicolor requires hydrogen bonding at the flavin N(5)/O(4) locus, which is offered by the side chain of Thr169 when the enzyme is in its closed, but not open, state. Moreover, our data show that additional stabilization at N(5) by histidine 548 is required to ensure high occupancy of the histidyl-flavin bond. The combination of structural and spectral data on pyranose 2-oxidase mutants supports the quinone methide mechanism. Our results demonstrate an elaborate structural fine-tuning of the active site to complete its own formation that couples efficient holoenzyme synthesis to conformational substates of the substrate-recognition loop and concerted movements of side chains near the flavinylation ligand.
黄素酶在自然界中执行广泛的氧化还原反应,并且黄素酶的一个子类携带共价结合的辅因子。酶-黄素键有助于增加黄素的氧化还原电位,以促进几种氧化酶中的底物氧化。酶-黄素共价键的形成——黄素化反应——在过去的 40 年中得到了研究。对于最被提倡的自动催化黄素化机制,即醌甲烯机制,在黄素 N(1)和 N(5)位置适当稳定发展的负电荷至关重要。虽然 N(1)稳定的结构基础得到了较好的研究,但 N(5)电荷稳定的结构要求仍然不太清楚。在这里,我们表明,多色侧耳糖 2-氧化酶中组氨酸 167 的黄素化需要黄素 N(5)/O(4)位置的氢键,当酶处于关闭状态但不是打开状态时,该氢键由 Thr169 的侧链提供。此外,我们的数据表明,需要组氨酸 548 来进一步稳定 N(5),以确保组氨酸-黄素键的高占有率。关于吡喃糖 2-氧化酶突变体的结构和光谱数据的组合支持醌甲烯机制。我们的结果表明,活性位点的精细结构调整是完成自身形成的,将有效的全酶合成与底物识别环的构象亚态以及黄素化配体附近侧链的协同运动耦合起来。