Suppr超能文献

氟代葡萄糖和半乳糖与具有改良半乳糖转化能力的彩绒革盖菌吡喃糖 2-氧化酶变体结合的结构基础。

Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion.

机构信息

Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.

School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden.

出版信息

PLoS One. 2014 Jan 21;9(1):e86736. doi: 10.1371/journal.pone.0086736. eCollection 2014.

Abstract

Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts.

摘要

每年,大约有 600 万吨乳糖作为工业副产物从液态乳清中产生,而这种大量的碳水化合物废物最好用于生产增值产品。彩绒革盖菌吡喃糖 2-氧化酶(TmP2O)催化各种单糖氧化为相应的 2-酮糖。因此,TmP2O 的一个潜在用途是将乳糖水解产物 D-葡萄糖和 D-半乳糖转化为更有价值的产物,如塔格糖。然而,葡萄糖的氧化强烈优先于半乳糖,并且希望两种底物以更相等的速率进行氧化。之前已经对具有提高的 D-半乳糖转化率的 TmP2O 变体(H450G、V546C、H450G/V546C)进行了表征,其中 H450G 显示出两种底物之间最佳的相对转化率。为了合理化转化率的变化,我们分析了与结合的 2-和 3-氟化葡萄糖和半乳糖的上述突变体的高分辨率晶体结构。所有突变体中,葡萄糖和半乳糖结合在产生活性 2-氧化结合模式中几乎相同,表明这种结合模式基本上不受突变的影响。对于竞争葡萄糖结合模式,携带 H450G 取代的酶变体稳定葡萄糖作为用于 3-氧化的α-异构体。位置 450 处的骨架松弛允许底物结合环紧密折叠在配体周围。然而,V546C 利用开放环构象稳定葡萄糖作为β-异构体。在关键活性位点骨架位置的细微松弛作用使半乳糖的结合得到改善。V546C 通过稳定 C1 氧化的β-异构体来稳定半乳糖 2-氧化的竞争结合模式,而 H450G 变体稳定半乳糖α-异构体的 3-氧化结合模式。本研究提供了对 D-葡萄糖和 D-半乳糖相对转化率变化的结合模式的详细描述,并可用于改进未来的酶设计,以更有效地利用乳糖水解副产物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50bf/3897772/b4fe02b52d05/pone.0086736.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验