Suppr超能文献

蜜环菌吡喃糖脱氢酶的 1.6Å 晶体结构阐明了底物特异性,并揭示了黄素中间产物。

The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate.

机构信息

School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.

出版信息

PLoS One. 2013;8(1):e53567. doi: 10.1371/journal.pone.0053567. Epub 2013 Jan 9.

Abstract

Pyranose dehydrogenases (PDHs) are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a) position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O) activates oxygen by a mechanism that proceeds via a covalent flavin C(4a)-hydroperoxide intermediate. Although the flavin C(4a) adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2 position accessible for oxidation, whereas 2-fluorinated glucose performed poorly (C3 accessible), indicating that the glucose C2 position is the primary site of attack.

摘要

吡喃糖脱氢酶(PDH)是一种细胞外黄素依赖性氧化还原酶,由分解落叶的真菌分泌,在植物物质的自然循环中发挥作用。木质纤维素中的所有主要单糖都以可比的产率和效率被 PDH 氧化。氧化发生在碳水化合物的单氧化或顺序双氧化反应中,导致主要在 C2、C3 或 C2/3 处氧化的糖衍生物,同时黄素被还原。然后合适的电子受体将还原的黄素重新氧化。尽管氧气是 PDH 的不良电子受体,但可以使用几种替代受体,例如木质纤维素降解过程中天然存在的醌类化合物。我们已经确定了来自 Agaricus meleagris 的 PDH 的 1.6-Å 晶体结构。有趣的是,PDH 中的黄素环在 C(4a) 位置被共价单原子或双原子物种修饰。在正常条件下,PDH 不会被氧气氧化;然而,相关的酶吡喃糖 2-氧化酶(P2O)通过一种机制激活氧气,该机制通过共价黄素 C(4a)-过氧化物中间体进行。尽管黄素 C(4a)加合物在单加氧酶中很常见,但在黄素蛋白氧化酶中并不常见,并且有人提出在这些氧化酶中形成中间体是不利的。因此,PDH 中的黄素加合物不仅表明加合物可以在活性位点中得到有利的容纳,而且还提供了关于相关氧化酶中形成这种黄素中间体的结构、空间和物理化学要求的重要细节。在 PDH 活性位点中对碳水化合物进行广泛的计算机建模,使我们能够合理推断先前报道的底物特异性和区域选择性模式。为了评估 D-葡萄糖氧化的区域选择性,使用氟化葡萄糖进行了还原实验。PDH 被 3-氟化葡萄糖迅速还原,其 C2 位置可用于氧化,而 2-氟化葡萄糖表现不佳(C3 可及),表明葡萄糖的 C2 位置是主要攻击点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验