Institute of Physiology, University of Münster, Münster, Germany.
J Biol Chem. 2010 Oct 29;285(44):33898-905. doi: 10.1074/jbc.M110.159897. Epub 2010 Aug 13.
Kv2.1 channels, which are expressed in brain, heart, pancreas, and other organs and tissues, are important targets for drug design. Flecainide and propafenone are known to block Kv2.1 channels more potently than other Kv channels. Here, we sought to explore structural determinants of this selectivity. We demonstrated that flecainide reduced the K(+) currents through Kv2.1 channels expressed in Xenopus laevis oocytes in a voltage- and time-dependent manner. By systematically exchanging various segments of Kv2.1 with those from Kv1.2, we determined flecainide-sensing residues in the P-helix and inner helix S6. These residues are not exposed to the inner pore, a conventional binding region of open channel blockers. The flecainide-sensing residues also contribute to propafenone binding, suggesting overlapping receptors for the drugs. Indeed, propafenone and flecainide compete for binding in Kv2.1. We further used Monte Carlo-energy minimizations to map the receptors of the drugs. Flecainide docking in the Kv1.2-based homology model of Kv2.1 predicts the ligand ammonium group in the central cavity and the benzamide moiety in a niche between S6 and the P-helix. Propafenone also binds in the niche. Its carbonyl group accepts an H-bond from the P-helix, the amino group donates an H-bond to the P-loop turn, whereas the propyl group protrudes in the pore and blocks the access to the selectivity filter. Thus, besides the binding region in the central cavity, certain K(+) channel ligands can expand in the subunit interface whose residues are less conserved between K(+) channels and hence may be targets for design of highly desirable subtype-specific K(+) channel drugs.
Kv2.1 通道在脑、心脏、胰腺和其他器官和组织中表达,是药物设计的重要靶点。氟卡尼和普罗帕酮被认为比其他 Kv 通道更有效地阻断 Kv2.1 通道。在这里,我们试图探索这种选择性的结构决定因素。我们证明氟卡尼以电压和时间依赖的方式减少 Xenopus laevis 卵母细胞中表达的 Kv2.1 通道的 K(+)电流。通过系统地将 Kv2.1 的各个片段与 Kv1.2 的片段交换,我们确定了 P 螺旋和内螺旋 S6 中的氟卡尼感应残基。这些残基不暴露于内孔,这是开放通道阻滞剂的传统结合区域。氟卡尼感应残基也有助于普罗帕酮结合,表明药物的重叠受体。事实上,普罗帕酮和氟卡尼尼竞争结合 Kv2.1。我们进一步使用蒙特卡罗能量最小化来绘制药物的受体图。氟卡尼在基于 Kv1.2 的 Kv2.1 同源模型中的对接预测配体铵基团位于中央腔中,苯甲酰胺部分位于 S6 和 P 螺旋之间的一个小窝中。普罗帕酮也结合在小窝中。其羰基接受来自 P 螺旋的 H-键,氨基向 P-环转角供体 H-键,而丙基基团突出在孔中并阻止选择性过滤器的进入。因此,除了中央腔的结合区域外,某些 K(+)通道配体可以在亚基界面中扩展,亚基界面中 K(+)通道之间的残基保守性较低,因此可能是设计理想的亚型特异性 K(+)通道药物的靶点。