Suppr超能文献

通过考察全局基因表达来阐明 Ralstonia eutropha H16 中的β-氧化途径。

Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression.

机构信息

Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

J Bacteriol. 2010 Oct;192(20):5454-64. doi: 10.1128/JB.00493-10. Epub 2010 Aug 13.

Abstract

Ralstonia eutropha H16 is capable of growth and polyhydroxyalkanoate production on plant oils and fatty acids. However, little is known about the triacylglycerol and fatty acid degradation pathways of this bacterium. We compare whole-cell gene expression levels of R. eutropha H16 during growth and polyhydroxyalkanoate production on trioleate and fructose. Trioleate is a triacylglycerol that serves as a model for plant oils. Among the genes of note, two potential fatty acid β-oxidation operons and two putative lipase genes were shown to be upregulated in trioleate cultures. The genes of the glyoxylate bypass also exhibit increased expression during growth on trioleate. We observed that single β-oxidation operon deletion mutants of R. eutropha could grow using palm oil or crude palm kernel oil as the sole carbon source, regardless of which operon was present in the genome, but a double mutant was unable to grow under these conditions. A lipase deletion mutant did not exhibit a growth defect in emulsified oil cultures but did exhibit a phenotype in cultures containing nonemulsified oil. Mutants of the glyoxylate shunt gene for isocitrate lyase were able to grow in the presence of oils, while a malate synthase (aceB) deletion mutant grew more slowly than wild type. Gene expression under polyhydroxyalkanoate storage conditions was also examined. Many findings of this analysis confirm results from previous studies by our group and others. This work represents the first examination of global gene expression involving triacylglycerol and fatty acid catabolism genes in R. eutropha.

摘要

恶臭假单胞菌 H16 能够利用植物油和脂肪酸生长并生产聚羟基烷酸酯。然而,人们对该细菌的三酰基甘油和脂肪酸降解途径知之甚少。我们比较了恶臭假单胞菌 H16 在以三油酸酯和果糖生长和生产聚羟基烷酸酯时的全细胞基因表达水平。三油酸酯是一种作为植物油模型的三酰基甘油。在值得注意的基因中,两个潜在的脂肪酸 β-氧化操纵子和两个假定的脂肪酶基因在三油酸酯培养物中被上调。乙醛酸旁路的基因在三油酸酯生长过程中也表现出更高的表达。我们观察到,恶臭假单胞菌的单个β-氧化操纵子缺失突变体可以使用棕榈油或粗棕榈仁油作为唯一碳源生长,无论基因组中存在哪个操纵子,但双突变体在这些条件下无法生长。脂肪酶缺失突变体在乳化油培养物中没有表现出生长缺陷,但在含有非乳化油的培养物中表现出表型。乙醛酸穿梭基因异柠檬酸裂解酶的突变体能在油的存在下生长,而苹果酸合酶(aceB)缺失突变体的生长速度比野生型慢。还检查了聚羟基烷酸酯储存条件下的基因表达。该分析的许多发现证实了我们小组和其他小组之前的研究结果。这项工作代表了对恶臭假单胞菌中涉及三酰基甘油和脂肪酸分解代谢基因的全局基因表达的首次检查。

相似文献

1
Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression.
J Bacteriol. 2010 Oct;192(20):5454-64. doi: 10.1128/JB.00493-10. Epub 2010 Aug 13.
2
Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16.
J Bacteriol. 2010 Oct;192(20):5319-28. doi: 10.1128/JB.00207-10. Epub 2010 Aug 20.
3
Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones.
Appl Environ Microbiol. 2013 Jul;79(14):4433-9. doi: 10.1128/AEM.00973-13. Epub 2013 May 17.
4
Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16.
Appl Microbiol Biotechnol. 2013 Mar;97(6):2443-54. doi: 10.1007/s00253-012-4115-z. Epub 2012 May 16.
5
Genome-wide transcriptome analyses of the 'Knallgas' bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism.
Microbiology (Reading). 2010 Jul;156(Pt 7):2136-2152. doi: 10.1099/mic.0.038380-0. Epub 2010 Apr 15.
7
Extension of the substrate utilization range of Ralstonia eutropha strain H16 by metabolic engineering to include mannose and glucose.
Appl Environ Microbiol. 2011 Feb;77(4):1325-34. doi: 10.1128/AEM.01977-10. Epub 2010 Dec 17.
8
Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16.
Appl Environ Microbiol. 2017 Jun 16;83(13). doi: 10.1128/AEM.00755-17. Print 2017 Jul 1.

引用本文的文献

2
Insights into genetic determinants of volatile fatty acid catabolism in H16.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0051525. doi: 10.1128/aem.00515-25. Epub 2025 Jun 12.
4
Carbon monoxide-oxidising Pseudomonadota on volcanic deposits.
Environ Microbiome. 2025 Jan 26;20(1):12. doi: 10.1186/s40793-025-00672-y.
6
Synthetic biology toolkit of Ralstonia eutropha (Cupriavidus necator).
Appl Microbiol Biotechnol. 2024 Aug 29;108(1):450. doi: 10.1007/s00253-024-13284-2.
7
Biosynthesis of Polyhydroxyalkanoates in B-10646 on Saturated Fatty Acids.
Polymers (Basel). 2024 May 5;16(9):1294. doi: 10.3390/polym16091294.
10
Impact of various β-ketothiolase genes on PHBHHx production in Cupriavidus necator H16 derivatives.
Appl Microbiol Biotechnol. 2022 Apr;106(8):3021-3032. doi: 10.1007/s00253-022-11928-9. Epub 2022 Apr 22.

本文引用的文献

2
Genome-wide transcriptome analyses of the 'Knallgas' bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism.
Microbiology (Reading). 2010 Jul;156(Pt 7):2136-2152. doi: 10.1099/mic.0.038380-0. Epub 2010 Apr 15.
4
Unravelling the C3/C4 carbon metabolism in Ralstonia eutropha H16.
J Appl Microbiol. 2010 Jul;109(1):79-90. doi: 10.1111/j.1365-2672.2009.04631.x. Epub 2009 Nov 19.
5
A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16.
Proteomics. 2009 Nov;9(22):5132-42. doi: 10.1002/pmic.200900333.
6
Structure of a fatty-acid-binding protein from Bacillus subtilis determined by sulfur-SAD phasing using in-house chromium radiation.
Acta Crystallogr D Biol Crystallogr. 2009 May;65(Pt 5):440-8. doi: 10.1107/S0907444909007756. Epub 2009 Apr 18.
7
Plant oils as feedstock alternatives to petroleum - A short survey of potential oil crop platforms.
Biochimie. 2009 Jun;91(6):665-70. doi: 10.1016/j.biochi.2009.03.021. Epub 2009 Apr 16.
8
Microbial production of 3-hydroxydodecanoic acid by pha operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene.
Appl Microbiol Biotechnol. 2009 Jun;83(3):513-9. doi: 10.1007/s00253-009-1919-6. Epub 2009 Mar 7.
9
Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes).
J Bacteriol. 2009 May;191(10):3195-202. doi: 10.1128/JB.01723-08. Epub 2009 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验